Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | Vol. 60, no 2 | 101--111
Tytuł artykułu

The Wholeness Axioms and the Class of Supercompact Cardinals

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We show that certain relatively consistent structural properties of the class of supercompact cardinals are also relatively consistent with the Wholeness Axioms.
Wydawca

Rocznik
Strony
101--111
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
  • Department of Mathematics Baruch College of CUNY New York, New York 10010, U.S.A., awapter@alum.mit.edu
  • The CUNY Graduate Center, Mathematics 365 Fifth Avenue New York, New York 10016, U.S.A.
Bibliografia
  • [1] A. W. Apter, Laver indestructibility and the class of compact cardinals, J. Symbolic Logic 63 (1998), 149–157.
  • [2] -, Some remarks on indestructibility and Hamkins’ lottery preparation, Arch. Math. Logic 42 (2003), 717–735.
  • [3] -, Some structural results concerning supercompact cardinals, J. Symbolic Logic 66 (2001), 1919–1927.
  • [4] A. W. Apter and Sh. Friedman, Coding into HOD via normal measures with some applications, Math. Logic Quart. 57 (2011), 366–372.
  • [5] A. W. Apter and S. Shelah, On the strong equality between supercompactness and strong sompactness, Trans. Amer. Math. Soc. 349 (1997), 103–128.
  • [6] P. Corazza, Consistency of V = HOD with the Wholeness Axiom, Arch. Math. Logic 39 (2000), 219–226.
  • [7] -, Lifting elementary embeddings j : Vλ→Vλ, ibid. 46 (2007), 61–72.
  • [8] -, The gap between I3 and the Wholeness Axiom, Fund. Math. 179 (2003), 43–60.
  • [9] P. Corazza, The spectrum of elementary embeddings j : V ! V , Ann. Pure Appl. Logic 139 (2006), 327–399.
  • [10] -, The Wholeness Axiom and Laver sequences, ibid. 105 (2000), 157–260.
  • [11] J. D. Hamkins, The lottery preparation, ibid. 101 (2000), 103–146.
  • [12] -, The Wholeness Axioms and V = HOD, Arch. Math. Logic 40 (2001), 1–8.
  • [13] T. Jech, Set Theory. The Third Millennium Edition, Revised and Expanded, Springer, Berlin, 2003.
  • [14] A. Kanamori, The Higher Infinite. Large Cardinals in Set Theory from Their Beginnings, 2nd ed., Springer, Berlin, 2003.
  • [15] Y. Kimchi and M. Magidor, The independence between the concepts of compactness and supercompactness, circulated manuscript.
  • [16] K. Kunen, Elementary embeddings and infinitary combinatorics, J. Symbolic Logic 36 (1971), 407–413.
  • [17] R. Laver, Making the supercompactness of k- indestructible under k-directed closed forcing, Israel J. Math. 29 (1978), 385–388.
  • [18] T. K. Menas, On strong compactness and supercompactness, Ann. Math. Logic 7 (1974/75), 327–359.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-445e1437-99b7-48a6-bf70-91945c54d1eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.