Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 46, No. 2 | 127-145
Tytuł artykułu

Effect or Program Constructs on Code Readability and Predicting Code Readability Using Statistical Modeling

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In software, code is the only part that remains up to date, which shows how important code is. Code readability is the capability of the code that makes it readable and understandable for professionals. The readability of code has been a great concern for programmers and other technical people in development team be- cause it can have a great influence on software maintenance. A lot of research has been done to measure the influence of program constructs on the code readability but none has placed the highly influential constructs together to predict the readability of a code snippet. In this article, we propose a novel framework using statistical modeling that extracts important features from the code that can help in estimating its read- ability. Besides that using multiple correlation analysis, our proposed approach can measure dependencies among different program constructs. In addition, a multiple regression equation is proposed to predict the code readability. We have automated the proposals in a tool that can do the aforementioned estimations on the input code. Using those tools we have conducted various experiments. The results show that the calculated estimations match with the original values that show the effectiveness of our proposed work. Finally, the results of the experiments are analyzed through statistical analysis in SPSS tool to show their significance.
Wydawca

Rocznik
Strony
127-145
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Computing & Technology Department, IQRA University, Islamabad, Pakistan
  • Computing & Technology Department, IQRA University, Islamabad, Pakistan
  • Computing & Technology Department, IQRA University, Islamabad, Pakistan
  • Computing & Technology Department, IQRA University, Islamabad, Pakistan
autor
  • Computing & Technology Department, IQRA University, Islamabad, Pakistan
Bibliografia
  • [1] Buse R. P. L., Weimer W.R., A metric for software readability. Proceedings of the 2008 international symposium on Software testing and analysis. ACM, 2008.
  • [2] Buse R. P. L., Weimer W. R., Learning a Metric for Code Readability, In IEEE Transactions on Software Engineering, vol. 36, no. 4, pp. 546-558, July-Aug. 2010.
  • [3] Collar E., Ricardo V., Role of software readability on software development cost, In the proceedings of the 21st Forum on COCOMO and Software Cost Modeling, Herndon, VA, 2006.
  • [4] Daryl P., Hindle A., Devanbu P., A simpler model of software readability, Proceedings of the 8th working conference on mining software repositories, ACM, 2011.
  • [5] Dhabhai D., Dua A.K., Saroliya A., Review paper: A Study on Metric For Code Readability, International Journal of Advanced Research in Computer Science and Software Engineering, Volume 5, Issue 6, June 2015.
  • [6] Duaa A., An empirical study of the relationships between code readability and software complexity, 2018.
  • [7] Gunning R., The Technique of Clear Writing. McGraw-Hill. pp. 36–37. 1952.
  • [8] Harry Mc.G., SMOG grading-a new readability formula, Journal of reading, vol. 12, no. 8, 1969, pp. 639-646.
  • [9] Hofmeister J., Siegmund J., Holt D. V., Shorter identifier names take longer to comprehend, 2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER), Klagenfurt, 2017, pp. 217-227.
  • [10] Hyndman R.J., Koehler A.B., Another Look at Measures of Forecast Accuracy, In International Journal of Forecasting, pp. 679-688, 2006.
  • [11] Kate R.J., Luo X., Patwardhan S., Franz M., Florian R., Joseph R., Roukos S., Welty C., Learning to predict readability using diverse linguistic features, In the proceedings of the 23rd International Conference on Computational Linguistics, August 2010, pp. 546–554.
  • [12] Kincaid J.P., Fishburne R.P., Rogers R.L., Chissom B.S., Derivation of new readability formulas (automated readability index, fog count, and flesch reading ease formula) for Navy enlisted personnel. Research Branch Report 8–75. Chief of Naval Technical Training: Naval Air Station Memphis. 1975.
  • [13] Levin R. I. Statistics for Management, Pearson Education India, 2008.
  • [14] Lin J., Wu K., A Model for Measuring Software Understandability, The Sixth IEEE International Conference on Computer and Information Technology (CIT’06), Seoul, 2006, pp. 192-192.
  • [15] Mark T., Mean Absolute Deviation. Dynamic Portfolio Theory and Management, 2004.
  • [16] Mccarthy P., Dufty D., McNamara D., Toward a new readability: A mixed model approach, In the proceedings of the 29th Annual Conference of the Cognitive Science Society, 2007.
  • [17] McNamara D.S., Ozuru Y., Graesser A., Louwerse M., Validating coh-metrix, In the proceedings of the 28th annual conference of the cognitive science society. Mahwah, NJ: Erlbaum, 2006.
  • [18] Namani R., Kumar J., A New Metric for Code Readability, IOSR Journal of Computer Engineering, vol. 6, Issue 6, (2012) November-December.
  • [19] Nielebock S., Krolikowski D., Krüger J., Leich T., Ortmeier F., Commenting source code: is it worth it for small programming tasks?, In Empirical Software Engineering, vol. 24, 2019, pp. 1418–1457.
  • [20] Relf P. A., Tool assisted identifier naming for improved software readability: an empirical study, 2005 International Symposium on Empirical Software Engineering, 2005.
  • [21] Scalabrino S., Linares-Vásquez M., Poshyvanyk D., Oliveto R., Improving code readability models with textual features, 2016 IEEE 24th International Conference on Program Comprehension (ICPC), Austin, TX, 2016, pp. 1-10.
  • [22] Scalabrino S., Linares-Vásquez M., Oliveto R., Poshyvanyk V, A comprehensive model for code readability, Journal of Software: Evolution and Process, vol. 30, no. 6, p. e1958, 2018.
  • [23] Senter R.J., Smith E.A., Automated Readability Index. Wright-Patterson Air Force Base: iii. AMRL-TR-6620. Retrieved March 18, 2012.
  • [24] Si L., Callan J., A statistical model for scientific readability, In proceedings of the 10th international conference on Information and knowledge management, October, 2001, pp. 574–576.
  • [25] Taek L.E.E., Jung-Been L.E.E., Effect analysis of coding convention violations on readability of post-delivered code. IEICE TRANSACTIONS on Information and Systems, vol. 98, no.7, 2015, pp. 1286-1296.
  • [26] Tashtoush Y., Odat Z., Alsmadi I., Yatim M., Impact of Programming Features on Code Readability, In International Journal of Software Engineering and Its Applications, vol. 7, 2013, pp. 441-458.
  • [27] Tufano M., Pantiuchina J., Watson C., Bavota G., Poshyvanyk D., On learning meaningful code changes via neural machine translation, In the proceedings of the 41st International Conference on Software Engineering, IEEE Press, 2019.
  • [28] White M., Tufano M., Martinez M., Monperrus M., Poshyvanyk D., Sorting and Transforming Program Repair Ingredients via Deep Learning Code Similarities, In the proceedings of the IEEE International Conference on Software Analysis, Evolution and Reengineering, 2019.
  • [29] Wu Y., Wang S., Bezemer C., Inoue K., How do developers utilize source code from stack overflow?. Empirical Software Engineering, vol. 24, no. 2, 2019, pp. 637-673.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-44537698-369a-4793-9fe7-98f37ccb077c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.