Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 46, No. 3 | 221--233
Tytuł artykułu

A Computational Technique for Solving Singularly Perturbed Delay Partial Differential Equations

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, a matrix method based on Laguerre series to solve singularly perturbed second order delay parabolic convection-diffusion and reaction-diffusion type problems involving boundary and initial conditions is introduced. The approximate solution of the problem is obtained by truncated Laguerre series. Moreover convergence analysis is introduced and stability is explained. Besides, a test case is given and the error analysis is considered by the different norms in order to show the applicability of the method.
Wydawca

Rocznik
Strony
221--233
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
Bibliografia
  • [1] Aizenshtadt V.S., Vladimir I.K., Metel’skii A.S., (2014). Tables of Laguerre Polynomials and Functions: Mathematical Tables Series, 39, Elsevier, Pergamon Press, London.
  • [2] Ansari A.R., Bakr S.A., Shishkin G.I., (2007). A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations. Journal of Computational and Applied Mathematics, 205, 1, 552-566. DOI: 10.1016/j.cam.2006.05.032.
  • [3] Avudai Selvi P., Ramanujam N., (2017). A parameter uniform difference scheme for singularly perturbed parabolic delay differential equation with Robin type boundary condition. Applied Mathematics and Computation, 296, 101-115. DOI: 10.1016/j.amc.2016.10.027.
  • [4] Bashier E.B.M., Patidar K.C., (2011). A novel fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation. Applied Mathematics and Computation, 217, 4728-4739. DOI: 10.1016/j.amc.2010.11.028.
  • [5] Bhrawy A.H., AlZahrani A., Baleanu D., Alhamed Y., (2014). A modified generalized Laguerre-Gauss collocation method for fractional neutral functional-differential equations on the half-line, In Abstract and Applied Analysis, 2014.
  • [6] Brunner H., Liang H., (2010). Stability of collocation methods for delay differential equations with vanishing delays. BIT Numerical Mathematics, 50, 4, 693-711. DOI: 10.1007/s10543-010-0285-1.
  • [7] Bulut H., Sulaiman T.A., Baskonus H.M., Rezazadeh H., Eslami M., Mirzazadeh M., (2018). Optical solitons and other solutions to the conformable space–time fractional Fokas–Lenells equation. Optik, 172, 20-27.
  • [8] Bülbül B., Sezer M., (2011). A Taylor matrix method for the solution of a two-dimensional linear hyperbolic equation, Applied Mathematics Letters, 24, 10, 1716-1720.
  • [9] Bülbül B., Sezer M., (2013). A new approach to numerical solution of nonlinear Klein-Gordon equation, Mathematical Problems in Engineering, 2013.
  • [10] Cerutti J.H., Parter S.V., (1976). Collocation methods for parabolic partial differential equations in one space dimension. Numerische Mathematik, 26, 3, 227-254.
  • [11] Chen X., Collocation Methods for Nonlinear Parabolic Partial Differential Equations, (2017). (Doctoral dissertation, Concordia University).
  • [12] Das A., Natesan S., (2015). Uniformly convergent hybrid numerical scheme for singularly perturbed delay parabolic convection-diffusion problems on Shishkin mesh, Applied Mathematics and Computation, 271, 168-186.
  • [13] Gao W., Veeresha P., Prakasha D.G., Baskonus H.M., Yel G., (2020). New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function. Chaos, Solitons & Fractals, 134, 109696.
  • [14] Gürbüz B., Sezer M., (2017). Laguerre polynomial solutions of a class of delay partial functional differential equations, Acta Physica Polonica, A, 132, 3, 558-560. DOI: 10.12693/APhysPolA.132.558.
  • [15] Gürbüz B., Sezer M., (2018). Modified Laguerre collocation method for solving 1-dimensional parabolic convection-diffusion problems, Mathematical Methods in the Applied Sciences, 41, 18, 8481-8487. DOI: 10.1002/mma.4721.
  • [16] Gürbüz B., Husein I., Weber G. W., (2021). Rumour propagation: an operational research approach by computational and information theory, Central European Journal of Operations Research, 1-21.
  • [17] Gürbüz B., Sezer M., (2017). A numerical solution of parabolic-type Volterra partial integro-differential equations by Laguerre collocation method, International Journal of Applied Physics and Mathematics, 7, 1, 49-58.
  • [18] Gürbüz B., Sezer M., (2020). A Modified Laguerre Matrix Approach for Burgers–Fisher Type Nonlinear Equations, Numerical Solutions of Realistic Nonlinear Phenomena, Springer, Cham. 107-123.
  • [19] Hemker P.W., Shishkin G.I., Shishkin L.P., (2003). Novel defect-correction high-order, in space and time, accurate schemes for parabolic singularly perturbed convectiondiffusion problems. Journal of Computational and Applied Mathematics, 3, 3, 387-404. DOI: 10.2478/cmam-2003-0025.
  • [20] Parthiban S., Valarmathi S., Franklin V., (2015). A numerical method to solve singularly perturbed linear parabolic second order delay differential equation of reaction-diffusion type. Malaya Journal of Matematik, 2, 412-420.
  • [21] Polyanin A.D., Zhurov A.I., (2014). Exact separable solutions of delay reaction-diffusion equations and other nonlinear partial functional-differential equations. Communications in Nonlinear Science and Numerical Simulation, 19, 409-416. DOI: 10.1016/j.cnsns.2013.07.019.
  • [22] Jiang J., Guirao J.L.G., Chen H., Cao D., (2019). The boundary control strategy for a fractional wave equation with external disturbances, Chaos, Solitons & Fractals, 121, 92-97.
  • [23] Kadalbajoo M.K., Sharma K.K., (2004). Numerical analysis of singularly perturbed delay differential equations with layer behavior, Applied Mathematics and Computation, 157, 1, 11-28.
  • [24] Kumar S., Kumar B.V.R., (2017). A domain decomposition Taylor Galerkin finite element approximation of a parabolic singularly perturbed differential equation. Applied Mathematics and Computation, 293, 508-522. DOI: 10.1016/j.amc.2016.08.031.
  • [25] Lin J., Reutskiy S., (2020). A cubic B-spline semi-analytical algorithm for simulation of 3D steady-state convection-diffusion-reaction problems, Applied Mathematics and Computation, 371, 124944.
  • [26] Mahzoun M.R., Kim J., Sawazaki S., Okazaki K., Tamura S., (1999). A scaled multigrid optical flow algorithm based on the least RMS error between real and estimated second images, Pattern Recognition, 32, 4, 657-670.
  • [27] Mirzaee F., Bimesl S., (2013). A new approach to numerical solution of second-order linear hyperbolic partial differential equations arising from physics and engineering, Results in Physics, 3, 241-247.
  • [28] Mirzaee F., Bimesl S., Tohidi E., Kilicman A., On the numerical solution of a class of singularly perturbed parabolic convection-diffusion equations.
  • [29] Müller S., Sverák V., (1998). Unexpected solutions of first and second order partial differential equations.
  • [30] Rai P., Sharma K.K., (2015). Singularly perturbed parabolic differential equations with turning point and retarded arguments. International Journal of Applied Mathematics and Computer Science, 45, 4.
  • [31] Russell R.D., Shampine L.F., (1972). A collocation method for boundary value problems. Numerische Mathematik, 19, 1, 1-28. DOI: 10.1007/BF01395926.
  • [32] Russell R.D., (1977). A comparison of collocation and finite differences for two-point boundary value problems. SIAM Journal on Numerical Analysis, 14, 1, 19-39. DOI: 10.1137/0714003.
  • [33] Salama A.A., Al-Amery D.G., (2017). A higher order uniformly convergent method for singularly perturbed delay parabolic partial differential equations. International Journal of Computer Mathematics, 94, 12, 2520-2546. DOI: 10.1080/00207160.2017.1284317.
  • [34] Sun W., Wu J., Zhang X., (2007). Nonconforming spline collocation methods in irregular domains. Numerical Methods for Partial Differential Equations: An International Journal, 23, 6, 1509-1529. DOI: 10.1137/0714003.
  • [35] Wang Y., Tian D., Li Z., (2017). Numerical method for singularly perturbed delay parabolic partial differential equations. Thermal Science, 21, 4, 1595-1599. DOI: 10.2298/TSCI160615040W.
  • [36] Yamaç ÇalıŞkan S.,Özbay H., (2009). Stability analysis of the heat equation with time-delayed feedback. IFAC Proceedings Volumes (IFAC-PapersOnline), 6, 1, 220-224. DOI: 10.3182/20090616-3-IL-2002.0056.
  • [37] Yavuz M.,Özdemir N., Baskonus H.M., (2018). Solutions of partial differential equations using the fractional operator involving Mittag-Leffler kernel. The European Physical Journal Plus, 133, 6, 1-11.
  • [38] Yüzbaşı Ş., Şahin N., (2013). Numerical solutions of singularly perturbed one-dimensional parabolic convection–diffusion problems by the Bessel collocation method. Applied Mathematics and Computation, 220, 305-315.
  • [39] Yüzbaşı Ş., Karaçayır M., (2020). An approximation technique for solutions of singularly perturbed one-dimensional convection-diffusion problem. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 33, 1, 2686.
  • [40] Zhao Y., Wu Y., Chai Z., Shi B., (2020). A block triple-relaxation-time lattice Boltzmann model for nonlinear anisotropic convection-diffusion equations, Computers & Mathematics with Applications, 79, 9, 2550-2573.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-43d6ed9a-b606-48b9-85eb-9a8626b45035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.