Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 23, no. 1 | art. no. e60, 2023
Tytuł artykułu

Enhancing the properties of friction stir welded joints of L-PBF printed AlSi10Mg alloy via multi-variable optimization

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The feasibility study to join the laser powder bed fused AlSi10Mg alloy sheets using different friction stir welding parameters was investigated in the present work. Fifteen butt-welded joints using varied parametric combinations were developed based on the design of the experiment's approach. An empirical model between the process parameters and tensile strength was developed and used to understand the mechanical behavior of the welded joints w.r.t. the FSW parameters, followed by the attainment of optimized welding conditions using response surface methodology. The results inferred that the weldability was most significantly influenced by the tool rotational speed, followed by the tool tilt angle and tool traverse speed. The microstructure and mechanical properties of the optimized welded joint were compared with the as-built alloy and the welded joint yielding minimum tensile strength. The electron back scattered diffraction analysis revealed the reduction of average grain size of the stir zone of the joints by 21% for the optimized weld, as compared to the as-built alloy. The welded zones of the joints showed a reduction in hardness by 40-50% and formed the stir zone as the weakest link. The parametric combinations of the optimized weld improved the joint efficiency by ≈ 20% compared to the other weld, followed by an improvement in ductility, which was further characterized using scanning electron microscopy.
Wydawca

Rocznik
Strony
art. no. e60, 2023
Opis fizyczny
Bibliogr. 81 poz., rys., tab., wykr.
Twórcy
  • Department of Industrial and Production Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India, Navdeepm.ip.19@nitj.ac.in
  • Department of Industrial and Production Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India, sharmav@nitj.ac.in
  • Department of Industrial and Production Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India, bhadauriass@nitj.ac.in
Bibliografia
  • 1. Buchanan C, Gardner L. Metal 3D printing in construction: a review of methods, research, applications, opportunities and challenges. Eng Struct. 2019;180:332-48. https://doi.org/10.1016/j.engstruct.2018.11.045.
  • 2. Herzog D, Seyda V, Wycisk E, Emmelmann C. Additive manufacturing of metals. Acta Mater. 2016;117:371-92. https://doi.org/10.1016/j.actamat.2016.07.019.
  • 3. Blakey-Milner B, Gradl P, Snedden G, Brooks M, Pitot J, Lopez E, Leary M, Berto F, du Plessis A. Metal additive manufacturing in aerospace: a review. Mater Des. 2021;209:110008. https://doi.org/10.1016/j.matdes.2021.110008.
  • 4. Horgar A, Fostervoll H, Nyhus B, Ren X, Eriksson M, Akselsen OM. Additive manufacturing using WAAM with AA5183 wire. J Mater Process Technol. 2018;259:68-74. https://doi.org/10.1016/j.jmatprotec.2018.04.014.
  • 5. Cunningham CR, Flynn JM, Shokrani A, Dhokia V, Newman ST. Invited review article: Strategies and processes for high quality wire arc additive manufacturing. Addit Manuf. 2018;22:672-86. https://doi.org/10.1016/j.addma.2018.06.020.
  • 6. Gradl PR, Tinker DC, Ivester J, Skinner SW, Teasley T, Bili JL. Geometric feature reproducibility for laser powder bed fusion (L-PBF) additive manufacturing with Inconel 718, Addit Manuf. 2021; 47: 102305. https://doi.org/10.1016/j.addma.2021.102305.
  • 7. Hitzler L, Merkel M, Hall W, Öchsner A. A review of metal fabricated with laser- and powder-bed based additive manufacturing techniques: process, nomenclature, materials, achievable properties, and its utilization in the medical sector. Adv Eng Mater. 2018;20:1-28. https://doi.org/10.1002/adem.201700658.
  • 8. Mower TM, Long MJ. Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater Sci Eng A. 2016;651:198-213. https://doi.org/10.1016/j.msea.2015.10.068.
  • 9. Sing SL, Yeong WY. Laser powder bed fusion for metal additive manufacturing : perspectives on recent developments (2020). https://doi.org/10.1080/17452759.2020.1779999.
  • 10. Hitzler L, Janousch C, Schanz J, Merkel M, Heine B, Mack F, Hall W, Öchsner A. Direction and location dependency of selective laser melted AlSi10Mg specimens. J Mater Process Technol. 2017;243:48-61. https://doi.org/10.1016/j.jmatprotec.2016.11.029.
  • 11. Galy C, Le Guen E, Lacoste E, Arvieu C. Main defects observed in aluminum alloy parts produced by SLM: from causes to consequences. Addit Manuf. 2018;22:165-75. https://doi.org/10.1016/j.addma.2018.05.005.
  • 12. Patakham U, Palasay A, Wila P, Tongsri R. MPB characteristics and Si morphologies on mechanical properties and fracture behavior of SLM AlSi10Mg. Mater Sci Eng A. 2021;821:141602. https://doi.org/10.1016/j.msea.2021.141602.
  • 13. Rao H, Giet S, Yang K, Wu X, Davies CHJ. The influence of processing parameters on aluminium alloy A357 manufactured by Selective Laser Melting. Mater Des. 2016;109:334-46. https://doi.org/10.1016/j.matdes.2016.07.009.
  • 14. Krishnan M, Atzeni E, Canali R, Calignano F, Manfredi D, Ambrosio EP, Iuliano L. On the effect of process parameters on properties of AlSi10Mg parts produced by DMLS. Rapid Prototyp J. 2014;20:449-58. https://doi.org/10.1108/RPJ-03-2013-0028.
  • 15. Zhi Wang L, Wang S, Jiao Wu J. Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting. Opt Laser Technol. 2017;96:88-96. https://doi.org/10.1016/j.optlastec.2017.05.006.
  • 16. Girelli L, Tocci M, Gelfi M. Author’ s accepted manuscript corresponding cast alloy. Mater Sci Eng A. 2018. https://doi.org/10.1016/j.msea.2018.10.026.
  • 17. Gerber A. On the influence of build orientation on properties of friction stir welded Al e Si10Mg parts produced by selective laser melting. J Mater Res Technol. 2021. https://doi.org/10.1016/j.jmrt.2021.03.101.
  • 18. Brock L, Ogunsanya I, Asgari H, Patel S, Vlasea M. Relative performance of additively manufactured and cast aluminum alloys. J Mater Eng Perform. 2021;30:760-82. https://doi.org/10.1007/s11665-020-05403-7.
  • 19. Gill M, Terry E, Abdi Y, Hawkes S, Rindler J, Schick D, Ramirez A, Herderick ED. Joining technologies for metal additive manufacturing in the energy industry. Jom. 2020;72:4214-20. https://doi.org/10.1007/s11837-020-04441-9.
  • 20. Biffi CA, Fiocchi J, Tuissi A. Laser weldability of AlSi10Mg alloy produced by selective laser melting: microstructure and mechanical behavior. J Mater Eng Perform. 2019;28:6714-9. https://doi.org/10.1007/s11665-019-04402-7.
  • 21. Nahmany M, Rosenthal I, Benishti I, Frage N, Stern A. Electron beam welding of AlSi10Mg workpieces produced by selected laser melting additive manufacturing technology. Addit Manuf. 2015;8:63-70. https://doi.org/10.1016/j.addma.2015.08.002.
  • 22. Nahmany M, Hadad Y, Aghion E, Stern A, Frage N. Microstructural assessment and mechanical properties of electron beam welding of AlSi10Mg specimens fabricated by selective laser melting. J Mater Process Technol. 2019;270:228-40. https://doi.org/10.1016/j.jmatprotec.2019.02.025.
  • 23. Cui L, Peng Z, Chang Y, He D, Cao Q, Guo X, Zeng Y. Porosity, microstructure and mechanical property of welded joints produced by different laser welding processes in selective laser melting AlSi10Mg alloys. Opt Laser Technol. 2022;150:107952. https://doi.org/10.1016/j.optlastec.2022.107952.
  • 24. Prashanth KG, Damodaram R, Scudino S, Wang Z, Prasad Rao K, Eckert J. Friction welding of Al-12Si parts produced by selective laser melting. Mater Des. 2014;57:632-7. https://doi.org/10.1016/j.matdes.2014.01.026.
  • 25. Zhang C, Bao Y, Zhu H, Nie X, Zhang W, Zhang S, Zeng X. A comparison between laser and TIG welding of selective laser melted AlSi10Mg. Opt Laser Technol. 2018;120:105696. https://doi.org/10.1016/j.optlastec.2019.105696.
  • 26. Du Z, Tan MJ. Joining of 3D-printed AlSi10Mg by friction stir welding. Weld World. 2018. https://doi.org/10.1007/s40194-018-0585-7.
  • 27. Rajak DK, Pagar DD, Menezes PL. Friction-based welding processes: friction welding and friction stir welding. J Sci Technol Adhes. 2020. https://doi.org/10.1080/01694243.2020.1780716.
  • 28. Threadgilll PL, Leonard AJ, Shercliff HR, Withers PJ. Friction stir welding of aluminium alloys. Int Mater Rev. 2009;54:49-93. https://doi.org/10.1179/174328009X411136.
  • 29. Su JQ, Nelson TW, Sterling CJ. Microstructure evolution during FSW/FSP of high strength aluminum alloys. Mater Sci Eng A. 2005;405:277-86. https://doi.org/10.1016/j.msea.2005.06.009.
  • 30. Arora KS, Pandey S, Schaper M, Kumar R. Effect of process parameters on friction stir welding of aluminum alloy 2219-T87. Int J Adv Manuf Technol. 2010;50:941-52. https://doi.org/10.1007/s00170-010-2560-3.
  • 31. Du Z, Chen H, Jen M, Bi G, Kai C. Investigation of porosity reduction, microstructure and mechanical properties for joining of selective laser melting fabricated aluminium composite via friction stir welding. J Manuf Process. 2018;36:33-43. https://doi.org/10.1016/j.jmapro.2018.09.024.
  • 32. Thakur A, Mehlwal S, Minhas N, Sharma V. Materials Science and engineering B influence of tool rotational speed on the microstructural characterization and mechanical properties of friction stir welded Al-Si10Mg parts produced by DMLS additive manufacturing process. Mater Sci Eng B. 2022;278:115612. https://doi.org/10.1016/j.mseb.2022.115612.
  • 33. Khodir SA, Shibayanagi T. Friction stir welding of dissimilar AA2024 and AA7075 aluminum alloys. Mater Sci Eng B Solid-State Mater Adv Technol. 2008;148:82-7. https://doi.org/10.1016/j.mseb.2007.09.024.
  • 34. Guo JF, Chen HC, Sun CN, Bi G, Sun Z, Wei J. Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters. Mater Des. 2014;56:185-92. https://doi.org/10.1016/j.matdes.2013.10.082.
  • 35. Ghosh M, Kumar K, Kailas SV, Ray AK. Optimization of friction stir welding parameters for dissimilar aluminum alloys. Mater Des. 2010;31:3033-7. https://doi.org/10.1016/j.matdes.2010.01.028.
  • 36. Koilraj M, Sundareswaran V, Vijayan S, Koteswara Rao SR. Friction stir welding of dissimilar aluminum alloys AA2219 to AA5083-Optimization of process parameters using Taguchi technique. Mater Des. 2012;42:1-7. https://doi.org/10.1016/j.matdes.2012.02.016.
  • 37. Richmire S, Haghshenas M. Friction stir welding of a hypoeutectic Al-Si alloy : microstructural, mechanical, and cyclic response. Mater Design. 2019. https://doi.org/10.1016/j.matdes.2012.02.016.
  • 38. Palanivel R, Koshy Mathews P, Murugan DI. Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys. Mater Des. 2012;40:7-16. https://doi.org/10.1016/j.matdes.2012.03.027.
  • 39. Patel V, De Backer J, Hindsefelt H, Igestrand M, Azimi S, Andersson J, Säll J. High speed friction stir welding of AA6063-T6 alloy in lightweight battery trays for EV industry: Influence of tool rotation speeds. Mater Lett. 2022. https://doi.org/10.1016/j.matlet.2022.132135.
  • 40. Dinaharan I, Kalaiselvan K, Vijay SJ, Raja P. Effect of material location and tool rotational speed on microstructure and tensile strength of dissimilar friction stir welded aluminum alloys. Arch Civ Mech Eng. 2012;12:446-54. https://doi.org/10.1016/j.acme.2012.08.002.
  • 41. Zhang C, Cao Y, Huang G, Zeng Q, Zhu Y, Huang X, Li N, Liu Q. Influence of tool rotational speed on local microstructure, mechanical and corrosion behavior of dissimilar AA2024/7075 joints fabricated by friction stir welding. J Manuf Process. 2020;49:214-26. https://doi.org/10.1016/j.jmapro.2019.11.031.
  • 42. Moshwan R, Yusof F, Hassan MA, Rahmat SM. Effect of tool rotational speed on force generation, microstructure and mechanical properties of friction stir welded Al-Mg-Cr-Mn (AA 5052-O) alloy. Mater Des. 2015;66:118-28. https://doi.org/10.1016/j.matdes.2014.10.043.
  • 43. Hou W, Ding Y, Huang G, Huda N, Hakim L, Shah A. The role of pin eccentricity in friction stir welding of Al-Mg-Si alloy sheets: microstructural evolution and mechanical properties. Int J Adv Manuf Technol. 2022. https://doi.org/10.1007/s00170-022-09793-x.
  • 44. Dehghani M, Amadeh A, Mousavi SAAA. Materia ls and Design Investigations on the effects of friction stir welding parameters on intermetallic and defect formation in joining aluminum alloy to mild steel. Mater Des. 2013;49:433-41. https:// doi.org/10.1016/j.matdes.2013.01.013.
  • 45. Zhang S, Shi Q, Liu Q, Xie R, Zhang G, Chen G. Effects of tool tilt angle on the in-process heat transfer and mass transfer during friction stir welding. Int J Heat Mass Transf. 2018;125:32-42. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.067.
  • 46. Zhao Y, Lin S, Qu F, Wu L, Zhao Y, Lin S, Qu F, Wu L. Influence of pin geometry on material flow in friction stir welding process influence of pin geometry on material flow in friction stir welding process. Mater Sci Technol. 2013;22:0836. https://doi.org/10.1179/174328406X78424.
  • 47. Mugada KK, Adepu K. Influence of tool shoulder end features on friction stir weld characteristics of Al-Mg-Si alloy. Int J Adv Manuf Technol. 2018;99:1553-66.
  • 48. Chen G, Li H, Wang G, Guo Z, Zhang S, Dai Q, Wang X, Zhang G, Shi Q. International journal of machine tools and manufacture effects of pin thread on the in-process material flow behavior during friction stir welding : a computational fluid dynamics study. Int J Mach Tools Manuf. 2018;124:12-21. https://doi.org/10.1016/j.ijmachtools.2017.09.002.
  • 49. Banik A, Saha Roy B, Deb Barma J, Saha SC. An experimental investigation of torque and force generation for varying tool tilt angles and their effects on microstructure and mechanical properties: friction stir welding of AA 6061-T6. J Manuf Process. 2018;31:395-404. https://doi.org/10.1016/j.jmapro.2017.11.030.
  • 50. Chen H, Yan K, Lin T, Chen S, Jiang C, Zhao Y. The investigation of typical welding defects for 5456 aluminum alloy friction stir welds. Mater Sci Eng A. 2006;433:64-9. https://doi.org/10.1016/j.msea.2006.06.056.
  • 51. Dialami N, Cervera M, Chiumenti M. Effect of the tool tilt angle on the heat generation and the material flow in friction stir welding. 2019. https://doi.org/10.3390/met9010028.
  • 52. Palanivel S, Arora A, Doherty KJ, Mishra RS. A framework for shear driven dissolution of thermally stable particles during friction stir welding and processing. Mater Sci Eng A. 2016;678:308-14. https://doi.org/10.1016/j.msea.2016.10.015.
  • 53. Sabari SS, Malarvizhi S, Balasubramanian V. Influences of tool traverse speed on tensile properties of air cooled and water cooled friction stir welded AA2519-T87 aluminium alloy joints. J Mater Process Technol. 2016;237:286-300. https://doi.org/10.1016/j.jmatprotec.2016.06.015.
  • 54. Ashok Kumar B, Murugan N. Optimization of friction stir welding process parameters to maximize tensile strength of stir cast AA6061-T6/AlNp composite. Mater Des. 2014;57:383-93. https://doi.org/10.1016/j.matdes.2013.12.065.
  • 55. Kumar K, Kailas SV. The role of friction stir welding tool on material flow and weld formation. Mater Sci Eng A. 2008;485:367-74. https://doi.org/10.1016/j.msea.2007.08.013.
  • 56. Zhang X, Yocom CJ, Mao B, Liao Y. Microstructure evolution during selective laser melting of metallic materials: a review. J Laser Appl. 2019;31:031201. https://doi.org/10.2351/1.50852 06.
  • 57. Liu M, Takata N, Suzuki A, Kobashi M. Microstructural characterization of cellular AlSi10Mg alloy fabricated by selective laser melting. Mater Des. 2018;157:478-91. https://doi.org/10.1016/j.matdes.2018.08.005.
  • 58. Liu X, Zhao C, Zhou X, Shen Z, Liu W. Microstructure of selective laser melted AlSi10Mg alloy. Mater Des. 2019;168:107677. https://doi.org/10.1016/j.matdes.2019.107677.
  • 59. Hadadzadeh A, Shalchi B, Li J, Mohammadi M. Columnar to equiaxed transition during direct metal laser sintering of AlSi10Mg alloy: effect of building direction. Addit Manuf. 2018;23:121-31. https://doi.org/10.1016/j.addma.2018.08.001.
  • 60. Kumar A, Biswas P. Effect of tool pin profile on the material flow characteristics of AA6061. J Manuf Process. 2017;26:382-92. https://doi.org/10.1016/j.jmapro.2017.03.005.
  • 61. Hasan M, Khalkhali A, Akbari M, Tahani M. Application of Taguchi optimization technique in determining aluminum to brass friction stir welding parameters. Mater Des. 2013;52:587-92. https://doi.org/10.1016/j.matdes.2013.06.003.
  • 62. Kim YG, Fujii H, Tsumura T, Komazaki T, Nakata K. Three defect types in friction stir welding of aluminum die casting alloy. Mater Sci Eng A. 2006;415:250-4. https://doi.org/10.1016/j.msea.2005.09.072.
  • 63. Yan Q, Song B, Shi Y. Journal of materials science and technology comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting. J Mater Sci Technol. 2020;41:199-208. https://doi.org/10.1016/j.jmst.2019.08.049.
  • 64. Ghasri-Khouzani M, Peng H, Attardo R, Ostiguy P, Neidig J, Billo R, Hoelzle D, Shankar MR. Comparing microstructure and hardness of direct metal laser sintered AlSi10Mg alloy between different planes. J Manuf Process. 2019;37:274-80. https://doi.org/10.1016/j.jmapro.2018.12.005.
  • 65. Thijs L, Kempen K, Kruth JP, Van Humbeeck J. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 2013;61:1809-19. https://doi.org/10.1016/j.actamat.2012.11.052.
  • 66. Liu YJ, Liu Z, Jiang Y, Wang GW, Yang Y, Zhang LC. Gradient in microstructure and mechanical property of selective laser melted AlSi10Mg. J Alloys Compd. 2017. https://doi.org/10.1016/j.jallcom.2017.11.020.
  • 67. Moeini G, Sajadifar SV, Wegener T, Rössler C, Gerber A, Böhm S, Niendorf T. On the influence of build orientation on properties of friction stir welded Al-Si10Mg parts produced by selective laser melting. J Mater Res Technol. 2021;12:1446-60. https://doi.org/10.1016/j.jmrt.2021.03.101.
  • 68. J.H. Cho, W. Jae Kim, C. Gil Lee. Texture and microstructure evolution and mechanical properties during friction stir welding of extruded aluminum billets. Mater Sci Eng A. 2014;597:314-323. https://doi.org/10.1016/j.msea.2013.12.087.
  • 69. P. Yu, C. Wu, L. Shi. Acta materialia analysis and characterization of dynamic recrystallization and grain structure evolution in friction stir welding of aluminum plates. 2021;207. https://doi.org/10.1016/j.actamat.2021.116692.
  • 70. Mahdi M, Jamshidi H, Jamaati R. Microstructure and texture evolution of friction stir welded dissimilar aluminum alloys : AA2024 and AA6061. J Manuf Process. 2018;32:1-10. https://doi.org/10.1016/j.jmapro.2018.01.016.
  • 71. Chen S, Jiang X. Texture evolution and deformation mechanism in friction stir welding of 2219Al. Mater Sci Eng A. 2014;612:267-77. https://doi.org/10.1016/j.msea.2014.06.014.
  • 72. W.F. Xu, Y.X. Luo, M.W. Fu. Materials Characterization Microstructure evolution in the conventional single side and bobbin tool friction stir welding of thick rolled 7085-T7452 aluminum alloy. 2018;138: 48-55. https://doi.org/10.1016/j.matchar.2018.01.051.
  • 73. Moradi MM, Jamshidi Aval H, Jamaati R, Amirkhanlou S, Ji S. Microstructure and texture evolution of friction stir welded dissimilar aluminum alloys: AA2024 and AA6061. J Manuf Process. 2018;32:1-10. https://doi.org/10.1016/j.jmapro.2018.01.016.
  • 74. Moeini G, Sajadifar SV, Wegener T, Brenne F, Niendorf T, Böhm S. On the low-cycle fatigue behavior of friction stir welded Al-Si12 parts produced by selective laser melting. Mater Sci Eng A. 2019;764:138189. https://doi.org/10.1016/j.msea.2019.138189.
  • 75. F. Trevisan, F. Calignano, M. Lorusso, J. Pakkanen, A. Aversa, E.P. Ambrosio, M. Lombardi, P. Fino, D. Manfredi, on the selective laser melting (SLM) of the AlSi10Mg alloy: process, microstructure, and mechanical properties. Materials (Basel). 2017;10. https://doi.org/10.3390/ma10010076.
  • 76. M. Lahres, W. M. Gan, E. Maawad, X. X. Zhang, A. Lutz, H. Andr. Evolution of microscopic strains, stresses, and dislocation density during in-situ tensile loading of additively manufactured AlSi10Mg alloy. 2021;139: 1-22. https://doi.org/10.1016/j.ijplas.2021.102946.
  • 77. Du Z, Chen HC, Tan MJ, Bi G, Chua CK. Investigation of porosity reduction, microstructure and mechanical properties for joining of selective laser melting fabricated aluminium composite via friction stir welding. J Manuf Process. 2018;36:33-43. https://doi.org/10.1016/j.jmapro.2018.09.024.
  • 78. Zhang C, Feng K, Kokawa H, Li Z, Chen K. Microstructure transition and mechanical properties of friction stir processed CoCrFeMnNi high entropy alloy fabricated by laser powder bed fusion. Mater Sci Eng A. 2022;845:143254. https://doi.org/10.1016/j.msea.2022.143254.
  • 79. Hadadzadeh A, Amirkhiz BS, Mohammadi M. Contribution of Mg2Si precipitates to the strength of direct metal laser sintered AlSi10Mg. Mater Sci Eng A. 2019;739:295-300. https://doi.org/10.1016/j.msea.2018.10.055.
  • 80. Aghajani H, Khodabakhshi F. Simulation and experimental study of underwater dissimilar friction-stir welding between aluminium and steel. Integr Med Res. 2020;9:3767-81. https://doi.org/10.1016/j.jmrt.2020.02.003.
  • 81. Zhao L, Guillermo J, Macías S, Ding L, Idrissi H, Simar A. Materials science and engineering a damage mechanisms in selective laser melted AlSi10Mg under as built and different post-treatment conditions. Mater Sci Eng A. 2019;764:138210. https://doi.org/10.1016/j.msea.2019.138210.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-43d254e2-4693-499c-991d-c0bf82101d29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.