Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Tom 26 | 236--250
Tytuł artykułu

The Use of Methane from Landfill Gas to Generate Energy and its Management at the Plant as a Way to Reduce Climate Change

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the era of consumerism, increasing amounts of waste constitute an ecological and logistical problem. Waste landfills are increasingly installing degassing installations and obtaining landfill gas containing methane as a renewable energy source. The work aims to analyse the production and management of energy at a selected waste landfill operating a cogeneration unit. The role of landfill gas, its production amount, composition and use in cogeneration units to produce energy were analysed. The biogas produced is used to produce electricity and heat at the analysed waste treatment plant. The research showed the extraction and energy use of biogas in the amount of 916,876 m3 per year, which produced 1,558 MWh of electricity and 1,589 MWh of heat in cogeneration. The electricity produced is a power source for the enterprise and its infrastructure, and the surplus is sent to the power grid. However, 34% of the heat is used for the plant's needs. The remaining part can be used in ORC systems (Organic Rankine Cycle). The tests showed that the total efficiency of energy production is 85.80%, with the availability index of the cogeneration unit amounting to 0.95. The energetic use of landfill gas containing methane is an optimal solution from an energy and environmental perspective to limit climate change.
Słowa kluczowe
Wydawca

Rocznik
Tom
Strony
236--250
Opis fizyczny
Bibliogr. 79 poz., rys., tab.
Twórcy
  • Faculty of Engineering Sciences, State University of Applied Sciences in Nowy Sącz, Poland , ebasta@ans-ns.edu.pl
  • Municipal Waste Disposal Plant "Orli Staw", Orli Staw 2, 62-834 Cekow, Poland
Bibliografia
  • Abanades, S., Abbaspour, H., Ahmadi, A., Das, B., Ehyaei, M.A., Esmaeilion, F., El Haj Assad, M., Hajilounezhad, T., Jamali, D. H., Hmida, A., Ozgoli, H.A., Safari, S., Al Shabi, M., Bani-Hani, E.H. (2022). A critical review of biogas production and usage with legislations Frome work across the Globe. Environ. Sci. Technol., 19, 3377-3400. https://doi.org/10.1007/s13762-021-03301-6
  • Angelidaki, I, Boe, K, Ellegaard, L. (2005). Effect of operating conditions and react or configuration on efficiency of full-scale biogas plants. Water Science and Technology, 52(1-2), 189-194. https://doi.org/10.2166/wst.2005.0516
  • AntoineBeylot. SM., Descat, M., Ménard, Y., Villeneuve, J. (2018). Life cycle assessment of the French municipal solid waste incineration sector. Waste Management, 80, 144-53. https://doi.org/10.1016/j.wasman.2018.08.037
  • Arsal, M., Yilmaz, C. (2022). Design and optimisation of multi generation biogas power plant using waste heat recovery System: A case study with Energy, Exergy, and thermoeconomic approach of Power, cooling and heating. Fuel, 324, Part C, 124779. https://doi.org/10.1016/j.fuel.2022.124779
  • Arsal, M., Yilmaz, C. (2022). Thermodynamic Optimisation and Thermoeconomic Evaluation of Afyon Biogas Plant assisted by Organic Rankine Cycle for waste heat recovery. Energy, 248, 123487. https://doi.org/10.1016/j.energy.2022.123487
  • Babenko, D.A., Pashkevich, M.A., Alekseenko, A.V. (2020). Water Quality Management at the Tailings Storage Facility of the Gaisky Mining and Processing Plant. Rocznik Ochrona Środowiska, 22(1), 214-225.
  • Balcerzak W, Generowicz A, Mucha Z. (2014). Application of a multi-criteria analysis for selection of a method of reclamation method of a hazard ous waste landfill. Polish Journal of Environmental Studies, 23(3), 983-987.
  • Barragán-Escandón, A., Olmedo Ruiz, J.M., CurilloTigre, J.D., Zalamea-León, E.F. (2020). Assessment of power generation using biogas from landfills in an equatorial tropical context. Sustainability, 12(7), 2669. https://doi.org/10.3390/su12072669
  • Bioenergy IEAI. (2019). Country Report Summaries 2019. Downloaded from: https://www.ieabioenergy.com/wp-content/uploads/2020/03/IEA-Task-37-Country-Report-Summaries-2019-1.pdf (22.03.2024)
  • Bochmann, G., Montgomery, L.F.R. (2013). Storage and pretreatment of substrates for biogas production, Wood head Publishing Series in Energy, 85-103. https://doi.org/10.1533/9780857097415.1.85
  • Cao, Y., Dhahad, H.A., Togun, H., Haghghi, M.A., Anqi, A.E., Farouk, N., Rosen, M.A. (2021). Seasonal design and multi-objective optimisation of a novel biogas-fueled cogeneration application. International Journal of Hydrogen Energy, 46(42), 21822-21843. https://doi.org/10.1016/j.ijhydene.2021.04.044
  • Ciuła, J., Gaska, K., Siedlarz D., Koval V. (2019). Management of sewage sludge energy use with the application of bi-functional bioreactor as an element of pure production in industry. E3S Web of Conferences, 123, 01016. https://doi.org/10.1016/j.ijhydene.2021.04.044
  • Ciuła, J., Kowalski, S., Generowicz, A., Barbusiński, K., Matuszak, Z., Gaska, K. (2023a). Analysis of Energy GenerationEfficiency and Reliability of a Cogeneration Unit Powered by Biogas. Energies, 16, 2180. https://doi.org/10.3390/en16052180
  • Ciuła, J., Kowalski, S., Wiewiórska, I. (2023c) Pollution Indicator of a Megawatt Hour Produced in Cogeneration – the Efficiency of Biogas Purification Process as an Energy Source for Waste water Treatment Plants. Jour-nal of Ecological Engineering, 24(3), 232-245. https://doi.org/10.12911/22998993/158562
  • Ciuła, J., Wiewiórska, I., Banaś, M., Pająk, T., Szewczyk, P. (2023b). Balance and Energy Use of Biogas in Poland: Prospects and Directions of Development for the Circular Economy. Energies, 16, 3910. https://doi.org/10.3390/en16093910
  • Colonna, P., Casati, E., Carsento, T., Mathijssen, T., Larjola, J., Turunen-Saaresti, T., Uusitalo, A. (2015). Organic Rankine Cycle Power Systems: From the Concept to Current Technology, Applications, and an Outlook to the Future. J. Eng. Gas Turbines Power, 137(10), 1-9. https://doi.org/10.1115/1.4029884
  • Damyanova, S., Beschkov, V. (2020). Biogas as a source of energy and chemicals. In: Beschkov V. (ed.) Biorefinery concepts, Energy and Products. https://doi.org/10.5772/intechopen.90558
  • Davidsson, A, Gruvberger, C, Christensen, T.H, Hansen, T.L, Jansen, J. (2007). Methane yield in source-sorted organic fraction of municipal solid waste. Waste Management, 27(3), 406-414. https://doi.org/10.1016/j.wasman.2006.02.013
  • Delgado, M., López, A., Esteban-García, A., Lobo, A. (2023). The importance of particularising the model to esti-mate landfill GHG emissions. J Environ Manage, 3259(B), 116600. https://doi.org/10.1016/j.jenvman.2022.116600
  • Dewil, R., Appels, L., Baeyens, J. (2006). Energy use of biogas hampered by the presence of siloxanes. Energy Conversion and Management, 47(13-14), 1711-1722. https://doi.org/10.1016/j.enconman.2005.10.016
  • Directive 2008/98/EC of the European Parliament and of the Council of November 19 2008 on waste and repealing certain directives, OJ 312 of 22/11/2008, (02.02.2024), https://eurlex.europa.eu/legalcontent/pl/TXT/PDF/?uri=CELEX:02008L009820180705&from=EN (in Polish)
  • Directive 2009/28/EC of the European Parliament and of the Council of April 23 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, download from:https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009L0028, access date: 02.02.2024.
  • Duan, Z., Scheutz, Ch., Kjeldsen, P. (2021). Trace gas emissions from municipal solid waste landfills: A review. Waste Management, 119, 39-62. https://doi.org/10.1016/j.wasman.2020.09.015
  • Dużyński, A. (2012). Summary of threeyears of operation of the biogas cogeneration unit at the Warta S.A. sewage treatment plant in Częstochowa. Autobusy : technika, eksploatacja, systemy transportowe, 13(10), 43-51. (in Polish).
  • Gaj, K. (2017). Applicability of selected methods and sorbents to simultaneous removal of siloxanes and Rother impurities from biogas. CleanTechnol. Environ. Policy, 19, 2181-2189. https://doi.org/10.1007/s10098-017-1422-1
  • Gaska, K., Generowicz, A., Lobur, M., Jaworski, N., Ciuła, J., Vovk, M. (2019). Advanced algorithmic model for polyoptimisation of biomass fuel production from separate combustible fractions of municipall wastes as a progress in improving energy efficiency of waste utilisation. E3S Web of Conferences 122, 01004, https://doi.org/10.1051/e3sconf/201912201004
  • Gebhardt, Z., Wojtowicz, R. (2019). The use of fossil gas fuels to improve the efficiency of energy production from renewable sources. Nafta-Gaz, 7, 413-419. https://doi.org/10.18668/NG.2019.07.05
  • Gronba-Chyła, A., Genereowicz, A. (2020). Municipal waste fraction below 10 mm and possibility of itsuse in ceramic building materials. Przemysł Chemiczny, 1(9), 60-63. https://doi.org/10.15199/62.2020.9.10
  • Gronba-Chyła, A., Generowicz, A., Alwaeli, M., Mannheim, V., Grąz, K., Kwaśnicki, P., Kramek, A. (2024). Waste utilisation as a substitute for natural aggregate in the light of the circular economy. Journal of Cleaner Pro-duction, 440(1.4), 140907. https://doi.org/10.1016/j.jclepro.2024.140907
  • Hebda, K., Kołodziejak, G. (2022). Dynamic testing of the efficiency of degassing wells as a means to reduce greenhouse gas emissions from landfills. Nafta-Gaz, 78(9), 679-687. https://doi.org/10.18668/NG.2022.09.05
  • Igliński, B., Buczkowski, R., Iglińska, A., Cichosz, M., Piechota, G., Kujawski, W. (2012). Agricultural biogas plants in Poland: investment process, economical and environmental aspects, biogas potential. Renewable and Sustainable Energy Reviews, 16(7), 890-4900. https://doi.org/10.1016/j.rser.2012.04.037
  • Igliński, B., Piechota, G., Iwański, P., Skarzatek, M., Pilarski, G., (2020). Years of the Polish agricultural biogas plants: their history, current status, biogas potential and perspectives. Clean Technologies and Environmen-tal Policy, 22, 1-29. https://doi.org/10.1007/s10098-020-01812-3.
  • Iliew, I.K., Terziev, A. K., Beloev, H.I., Nikolaev, I., Georgiev, A.G. (2021). Comparative analysis of the energy efficiency of different types co-generators at large scales CHPs, Energy, 221, 119755. https://doi.org/10.1016/j.energy.2021.119755
  • Jang, K., Choi, W.Y., Lee, D., Park, J., Yoo, Y. (2022). Purification of landfill gas by extracted calcium ions from municipal solid waste incineration flyash, Science of The Total Environment, Elsevier, 807, 150729. https://doi.org/10.1016/j.scitotenv.2021.150729
  • Kabeyi, M.J.B., Olanrewaju, O.A. (2022). Technologies for biogas to electricity conversion, Energy Reports, 8(16), 774-786. https://doi.org/10.1016/j.egyr.2022.11.007
  • Kabeyi, M.J.B., Olanrewaju, O.A. (2020). Managing sustainability in electricity generation. Presented at the 2020 IEEE international conference on industrial engineering and engineering management, Singapore, 14-17.10.2020, IEEM20-P-0406 [Online]. Available: https://ieeexplore.ieee.org/document/9309994
  • Kabeyi, M.J.B., Olanrewaju, O.A. (2022). Sustainable energy transition for renewable and low carbon grid electricity generation and supply, Front Energy Res Rev, 9, 1-45. http://doi.org/10.3389/fenrg.2021.743114
  • Kadam, R., Panwar, N.L. (2017). Recent advancement in biogas enrichment and its applications. Renewable and Sustainable Energy Reviews, 73, 892-903. https://doi.org/10.1016/j.rser.2017.01.167
  • Kaparaju, P., Rintala, J. (2013). 17-Generation of heat and power from biogas for stationary applications: boilers, gas engines and turbines, combined heat and power (CHP) plants and fuel cells, The Biogas Handbook, 404-427. https://doi.org/10.1533/9780857097415.3.404
  • Kaza, S., Yao, L., Bhada-Tata, P. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. World Bank Group. download from: https://openknowledge.worldbank.org/server/api/core/bitstreams/92a50475-3878-5984-829e-0a09a6a9badc/content (19.04.2024)
  • Klimek, P. (2009). Landfill gas feeding to the natural gas system. Kraków: Instytut Nafty i Gazu, 5, 415-418. (in Polish)
  • Kneba, Z. (2011). The production of effective power from a vehicle engine waste heat. Combustion Engines, 3(3), 24-27. https://doi.org/10.19206/CE-117088
  • Kowalski, S., Opoka, K., Ciuła, J. (2022). Analysis of the end-of-life the front suspension beam of a vehicle. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 24(3), 446-454. http://doi.org/10.17531/ein.2022.3.6
  • Kowalski, Z, Generowicz, A, Makara, A, Banach, M. (2011). The evaluation of technology for the production of phosphoric acid with BATNEEC options and multicriteria analysis. Przemysł Chemiczny, 90(5), 853-857. https://api.semanticscholar.org/CorpusID:94505566
  • Krause, M.J., Chickering, G.W., Townsend, T.G., Reinhart, D.R. (2016). Critical review of the methane generation potential of municipal solid waste. Crit. Rev. Environ. Sci. Technol., 46, 1117-1182. https://doi.org/10.1080/10643389.2016.1204812
  • Kwaśnicki, P, Gronba-Chyła, A, Generowicz, A, Ciuła, J, Wiewiórska, I, Gaska, K. (2023). Alternative method of ma king electric al connections in the 1st and 3rd generation modules as an effective way to improve module efficiency and reduce production costs. Archives of thermodynamics, 44(3), 179-200. https://doi.org/10.24425/ather.2023.147543
  • Labatut, R.A., Angenent, L.T., Scott, N.R. (2011). Biochemical methane potential and biodegradability of complex organic substrates. Bioresource Technology, 102(3), 2255-2264. https://doi.org/10.1016/j.biortech.2010.10.035
  • Li, Y., Zhang, R., Liu, G., Chen, C., He, Y., Liu, X. (2013). Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Bioresource Technology, 149(2), 565-569. https://doi.org/10.1016/j.biortech.2013.09.063
  • Luca, A., Cossu, R. (2015). Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Management, 36, 147-55. https://doi.org/10.1016/j.wasman.2014.11.019
  • Mavridis, S., Voudrias, E.A. (2021). Using biogas from municipal solid waste for energy production: Comparison between an aerobic digestion and sanitary landfilling. Energy Conversion and Management, 247, 114613. https://doi.org/10.1016/j.enconman.2021.114613
  • Mikhaylov, A., Moiseev, N., Aleshin, K., Burkhardt, T. (2020). Global climate change and greenhouse effect. Entrepreneur ship and Sustainability Issues, 7(4), 2897-2913. https://doi.org/10.9770/jesi.2020.7.4(21)
  • Minea, V. (2014). Power generation with ORC machine susinglow-grade waste heat or renewable energy, Applied Thermal Engineering, 69(1-2), 143-154. https://doi.org/10.1016/j.applthermaleng.2014.04.054
  • Molenda, J., Steczko, K. (2000). Environmental protection in the gas industry and gas use. Warszawa: WNT. (in Polish)
  • Muche, T., Höge, C., Renner, O., Pohl, R. (2016). Profitability of participation in controller serve market for bio-mass-fueled combined heat and power plants. Renew Energy, 90, 62-76. https://doi.org/10.1016/j.renene.2015.12.051
  • Nanda, S., Berruti, F.(2021).Municipal solid waste management and landfilling technologies: a review. Environ Chem Lett, 19, 1433-1456. https://doi.org/10.1007/s10311-020-01100-y
  • NikpeySomehsaraei, H., MansouriMajoumerd, M., Breuhaus, P., Assadi, M. (2014). Performance analysis of a biogas-fueled micro gas turbine using a validated thermodynamic model. Elsevier, 66(1), 181-190. https://doi.org/10.1016/j.applthermaleng.2014.02.010
  • Nitkiewicz, Sz., Duda, K. (2011). Purification of post fermentation methane. Download from: https://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztecharticleLODC00010010/c/nitkiewicz_duda_uzdatnianie_ss_3_2011.pdf (09.04.2024)
  • Oonk, H. (1994). Landfill Gas Formation, Recovery and Emission in The Netherlands. In: van Ham, J., Janssen, L.J.H.M., Swart, R.J. (eds.) Non-CO2 Greenhouse Gases: Why and How to Control? Springer, Dordrecht. 323-328. https://doi.org/10.1007/978-94-011-0982-6_37
  • Panagiotis, G., Irini, A. (2018). Biogas and its opportunities – A review. Frontiers of Environmental Science & Engineering, 12(14). https://doi.org/10.1007/s11783-018-1037-8
  • Przydatek, G., Basta, E. (2020). Systemic Efficiency Assessment of Municipal Solid Waste Management in the Suburban Municipality. E3S Web of Conferences, 154(2), 03001, https://doi.org/10.1051/e3sconf/202015403001
  • Ramprasad, C., Teja, H.C., Gowtham, V., Vikas, V. (2022). Quantification of landfill gas emissions and energy production potential in Tirupati Municipal solid waste disposal site by LandGEM mathematical model. MethodsX, 9, 101869. https://doi.org/10.1016/j.mex.2022.101869
  • Regulation of the Minister of Economy of February 23, 2010 amending the regulation on the detailed scope of obligations to obtain and submit for redemption certificates of origin, payment of a substitute fee, purchase of electricity and heat generated from renewable energy sources and the obligation to confirm data on the amount of electricity generated from renewable energy source. OJ 2010 No. 34, item 182, https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20100340182, (02.02.2023) (in Polish)
  • Różycki, A., W., Szramka, R. (2001). Co-generation of energy. Biuletyn URE 2/2001, (02.05.2023), https://www.cire.pl/publikacje/wytw_w_skojarzeniu.pdf (in Polish)
  • Santos-Clotas, E., Cabrera-Codony, A., Maria, J.M. (2020). Coupling adsorption with biotechnologies for siloxane abatement from biogas. Renewable Energy, 153, 314-323. https://doi.org/10.1016/j.renene.2020.02.026/0960-1481/
  • Skorek, J., Kalina, J. (2005). Gas cogeneration systems. Warszawa: WNT. (in Polish)
  • Sokka, L., Antikainen, R., Kauppi, P. (2007). Municipal solid waste production and composition in Finland – Changes in the period 1960-2002 and prospects until 2020. Resources, Conservation and Recycling, 50(4), 475-488. https://doi.org/10.1016/j.resconrec.2007.01.011
  • Stolze, Y, Zakrzewski, M, Maus, I, Eikmeyer, F, Jaenicke, S., Rottmann, N., Siebner, C., Pühler, A., Schlüter, A. (2015). Comparative metagenomics of biogas-producing microbial communities from production-scale bio-gas plants operating under wet or dry fermentation conditions. Biotechnology for Biofuels, 8(1), 14. https://doi.org/10.1186/s13068-014-0193-8
  • Szymaniec, S. (2017). Damage statistics in commercial power plants. Napędy i Sterowanie, 4, 100-105 (in Polish)
  • Szyszlak-Bargłowicz, J., Zając, G., Słowik, T. (2012). Gaining of the landfill gas. Autobusy : technika, eksploatacja, systemy transportowe, 13(10), 133-135.
  • Tartiére, T., Astolfi, M. (2017). A World Overview of the Organic Rankine Cycle Market. Energy Procedia, 129, 2-9. https://doi.org/10.1016/j.egypro.2017.09.159
  • Themelis, N.J., Bourtsalas, A.C. (2021). Methane Generation and Capture of U.S. Landfills. Journal of Environmental Science and Engineering, 199-206. https://doi.org/10.17265/2162-5298/2021.06.001
  • Wiśniewska, M., Kulig, A., Lelicińska-Serafin, K., (2020). Odour Emissions of Municipal Waste Biogas Plants-Impact of Technological Factors, Air Temperature and Humidity. Appl. Sci., 10(3), 1093, https://doi.org/10.3390/app10031093
  • Wysowska, E., Kicińska. A. (2021). Assessment of health risks with water consumption in terms of content of selected organic xenobiotics. Desalination and Water Treatment, 234, 1-14, https://doi.org/10.5004/dwt.2021.27720
  • Wysowska, E., Wiewiórska, I., Kicińska, A. (2022). Minerals in tap water and bottled waters and their impact on human health. Desalination and Water Treatment, 259, 133-151. https://doi.org/10.5004/dwt.2022.28437
  • Xu, L., Sun, F., Han, X. (2022). Assessment of Treatment Effect of Heavy Metal Pollution from Sewage Sludge in Wastewater Treatment Plant Discharge in China's Nanjing MV Industrial Park. Rocznik Ochrona Środowiska, 24, 276-293. https://doi.org/10.54740/ros.2022.020
  • Yuan, T., Zhang, Z., Lei, Z., Shimizu, K., Lee, D-J. (2022). A review on biogas upgrading in anaerobic digestion systems treating organic solids and wastewaters via biogas recirculation. Bioresource Technology, 344, Part B, 126412. https://doi.org/10.1016/j.biortech.2021.126412
  • Zator, S. (2018). Generation of electricity from renewable energy sources for own needs. Download from: https://www.researchgate.net/profile/SlawomirZator/publication/348733177_Wytwarzanie_energii_elektrycznej_z_OZE_na_potrzeby_wlasne/links/600d9cd5299bf14088bc42e8/Wytwarzanie-energii-elektrycznej-z-OZE-na-potrzeby-wlasne.pdf (08.03.2023) (in Polish)
  • Zhang, H., Guan, X., Ding, Y., Liu, C. (2018). Emergy analysis of Organic Rankine Cycle (ORC) for waste heat power generation. Journal of Cleaner Production, 183, 1207-1215. https://doi.org/10.1016/j.jclepro.2018.02.170
  • Zwolińska, N., Basta, E. (2024). Emissions of Gases and Dust into the Air as a Result of the Conversion of Land-fill Gas into Electricity and Heat in a Cogeneration Plant. Rocznik Ochrona Środowiska, 26, 94-105, https://doi.org/10.54740/ros.2024.010
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-43ca80df-a06c-4315-9e32-26f646e3aa85
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.