Warianty tytułu
Let’s start Polish @-mobility with AVANGARD
Języki publikacji
Abstrakty
Artykuł ma charakter problemowy. Scharakteryzowano w nim aktualne warunki rozwoju elektromobilności w Polsce i przedstawiono wyniki analizy problemowej z uwzględnieniem jej specyfiki. Wskazano główne bariery rozwoju i przedstawiono propozycję ich obejścia z wykorzystaniem nowych dedykowanych technologii i organizacji sieci producentów złożonych z małych i średnich przedsiębiorstw (MSP). Postawiono i starano się udowodnić tezę, że polska elektromobilność powinna rozwijać się w oparciu o europejską sieć współpracy (MSP).
The article is problematic. It characterizes the current state of development of electromobility in Poland and presents the results of the problem analysis taking into account its specificity and the current economic situation. A thesis was put forward and proved that Polish electromobility should develop on the basis of the European cooperation network of Small and Medium-sized Enterprises (SMEs) and science, and a systemic solution was proposed that would create conditions for effective research and development.
Czasopismo
Rocznik
Tom
Strony
199--205
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
- Polevs sp. z o.o., tomasz.miroslaw@polevs.pl
autor
- Polevs sp. z o.o., marcin.miroslaw@polevs.pl
autor
- Polevs sp. z o.o., Jakub.deda@polevs.pl
Bibliografia
- [1] Mateusz Morawiecki „Strategia Na Rzecz odpowiedzialnego Rozwoju do roku 2020 (z perspektywą do 2030r) wyd. Ministerstwo Rozwoju Departament Strategii rozwoju ISBN 978-83-7610-615-1
- [1] EUROPEAN COMMISION. A European Strategy for Low-Emission Mobility – Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions: A European Strategy for Low-Emission Mobility 2016.
- [2] Tomasz Mirosław, Marcin Mirosław Koncepcja Przemysłu 4.0 dla małoseryjnej produkcji samochodów elektrycznych Napędy i Sterowanie 10/2021
- [3] Chang, Y.-J.; Sproesser, G.; Neugebauer, S.; Wolf, K.; Scheumann, R.; Pittner, A.; Rethmeier, M.; Finkbeiner, M. Environmental and Social Life Cycle Assessment of Welding Technologies. Procedia CIRP 2015, 26, 293–298, doi:10.1016/j.procir.2014.07.084
- [4] Apostolos, F.; Panagiotis, S.; Konstantinos, S.; George, C.Energy Efficiency Assessment of Laser Drilling Process. Physics Procedia 2012, 39, 776–783, doi:10.1016/j.phpro.2012.10.100.
- [5] Apostolos, F.; Alexios, P.; Georgios, P.; Panagiotis, S.; George, C. Energy Efficiency of Manufacturing Processes: A Critical Review. Procedia CIRP 2013, 7, 628–633, doi:10.1016/j.procir.2013.06.044.
- [6] Schleth, G.; Kuss, A.; Kraus, W. Workpiece localization methods for robotic welding–a review. 50th International Symposium on Robotics 2018, 1–6.
- [7] Dahmen, M.; Güdükkurt, O.; Kaierle, S. The ecological footprint of laser beam welding. Physics Procedia 2010, 5, 19–28, doi:10.1016/j.phpro.2010.08.025.
- [8] Alexy, M.; van de Wall, D.; Shannon, G.; Boyle, M.L. Batteries need strong connections – are resistance, laser and micro TIG welding the best suited joining technologies? eBIS 2019, 2019, 53–63, doi:10.17729/ebis.2019.1/6.
- [9] Mehlmann, B. Spatially Modulated Laser Beam Micro Welding of CuSn6 and Nickel-plated DC04 Steel for Battery Applications. JLMN 2014, 9, 276–281, doi:10.2961/jlmn.2014.03.0019.
- [10] U. F. Shaikh; A. Das; A. Barai; I. Masters. Electro-Thermo-Mechanical Behaviours of Laser Joints for Electric Vehicle Battery Interconnects. 2019 Electric Vehicles International Conference (EV) 2019, 1–6, doi:10.1109/EV.2019.8892972.
- [11] Kah, P.; Pirinen, M.; Suoranta, R.; Martikainen, J. Welding of Ultra High Strength Steels. AMR 2013, 849, 357–365, doi:10.4028/www.scientific.net/AMR.849.357.
- [12] Bayock, F.N.; Kah, P.; Salminen, A.; Belinga, M.; Yang, X.Feasibility study of welding dissimilar Advanced and Ultra HighStrength Steels. REVIEWS ON ADVANCED MATERIALS SCIENCE 2020, 59, 54–66, doi:10.1515/rams-2020-0006.
- [13] Mori, K.; Saito, S.; Maki, S. Warm and hot punching of ultra high strength steel sheet. CIRP Annals 2008, 57, 321–324, doi:10.1016/j.cirp.2008.03.125.
- [14] Turetta, A.; Bruschi, S.; Ghiotti, A. Investigation of 22MnB5 formability in hot stamping operations. Journal of Materials Processing Technology 2006, 177, 396–400, doi:10.1016/j.jmatprotec.2006.04.041.
- [15] Benyounis, K.Y.; Olabi, A.G.; Hashmi, M.S.J. Effect of laser welding parameters on the heat input and weld-bead profile. Journal of Materials Processing Technology 2005, 164-165, 978–985, doi:10.1016/j.jmatprotec.2005.02.060.
- [16] Reisgen, U.; Schleser, M.; Mokrov, O.; Ahmed, E. Shieldinggas influences on laser weldability of tailored blanks of advanced automotive steels. Applied Surface Science 2010, 257, 1401–1406, doi:10.1016/j.apsusc.2010.08.042.
- [17] Widener, C.A.; Ellingsen, M.; Carter, M. Understanding Cold Spray for Enhanced Manufacturing Sustainability. MSF 2018, 941, 1867–1873, doi:10.4028/www.scientific.net/MSF.941.1867.
- [18] Available online: https://www.titomic.com (accessed on 22-June-2020).
- [19] Available online: https://diceus.com/a-relationship-between-erp-and-crm/ (accessed on 18-June-2020).
- [20] Yin, S.; Cavaliere, P.; Aldwell, B.; Jenkins, R.; Liao, H.; Li, W.; Lupoi, R. Cold spray additive manufacturing and repair: Fundamentals and applications. Additive Manufacturing 2018, 21, 628–650, doi:10.1016/j.addma.2018.04.017.
- [21] Raoelison, R.N.; Verdy, C.; Liao, H. Cold gas dynamic spray additive manufacturing today: Deposit possibilities, technological solutions and viable applications. Materials & Design 2017, 133, 266–287, doi:10.1016/j.matdes.2017.07.067.
- [22] Bikas, H.; Stavropoulos, P.; Chryssolouris, G. Additive manufacturing methods and modelling approaches: a critical review. Int J Adv Manuf Technol 2016, 83, 389–405, doi:10.1007/s00170-015-7576-2.
- [23] Bikas, H.; Stavridis, J.; Stavropoulos, P.; Chryssolouris, G. A Design Framework to Replace Conventional Manufacturing Processes with Additive Manufacturing for Structural Components: A Formula Student Case Study. Procedia CIRP 2016, 57, 710–715, doi:10.1016/j.procir.2016.11.123.
- [24] Khorram Niaki, M.; Nonino, F. Impact of additive manufacturing on business competitiveness: a multiple case study. Jnl of Manu Tech Mnagmnt 2017, 28, 56–74, doi:10.1108/JMTM-01-2016-0001.
- [25] Martinsuo, M.; Luomaranta, T. Adopting additive manufacturing in SMEs: exploring the challenges and solutions. Jnl of Manu Tech Mnagmnt 2018, 29, 937–957, doi:10.1108/JMTM-02-2018-0030.
- [26] Papacharalampopoulos, Alexios, Panagiotis Stavropoulos, and Demetris Petrides. "Towards a digital twin for manufacturing processes: Applicability on laser welding." Procedia Cirp 88 (2020): 110-115.
- [27] Anyfantis, K.; Foteinopoulos, P.; Stavropoulos, P. Design for Manufacturing of Multi-material Mechanical Parts: A Computational Based Approach. Procedia CIRP 2017, 66, 22–26, doi:10.1016/j.procir.2017.03.365.
- [28] Anyfantis, K.; Stavropoulos, P.; Chryssolouris, G. Fracture mechanics based assessment of manufacturing defects laying at the edge of CFRP-metal bondlines. Prod. Eng. Res. Devel. 2018, 12, 173–183, doi:10.1007/s11740-018-0796-1.
- [29] Feistauer, E.E.; Santos, J.F.; Amancio-Filho, S.T. A review on direct assembly of through-the-thickness reinforced metal–polymer composite hybrid structures. Polym Eng Sci 2019, 59, 661–674, doi:10.1002/pen.25022.
- [30] Stavropoulos, P.; Michail, C.; Papacharalampopoulos, A. Towards predicting manufacturing effect on hybrid part efficiency: An automotive case. Procedia CIRP 2019, 85, 159–164, doi:10.1016/j.procir.2019.09.044.
- [31] Kibira, Deogratias, et al. "Procedure for selecting key performance indicators for sustainable manufacturing." Journal of Manufacturing Science and Engineering 140.1 (2018).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-43c85b2a-9b5a-46da-bf36-e5384cd6f5f5