Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Summer Safety and Reliability Seminar 2022 | 7--16
Tytuł artykułu

Degradation model for system incorporating heterogeneities

Treść / Zawartość
Warianty tytułu
Konferencja
16th Summer Safety & Reliability Seminars - SSARS 2022, 4-11 September 2022, Ciechocinek, Poland
Języki publikacji
EN
Abstrakty
EN
A system subject to several deteriorationprocesses is studiem. These processes arrive to the system following a Cox process and they grow according to a homogeneous gamma process. The system is failed when a degradation process exceeds a certain failure threshold. The maintenance strategy implemented on the system is condition-based maintenance, the deterioration state of the system is checked, and replacements are performer if necessary. A random effects model is considered to dealwith the heterogeneities between processes, in particular, a uniform distribution is used to model the inverse of the scale parameter of the gamma process. Finally, the analytic cost model is obtained and analysed through some numerical examples.
Wydawca

Rocznik
Strony
7--16
Opis fizyczny
Bibliogr. 37 poz., tab., wykr.
Twórcy
Bibliografia
  • Abdel-Hameed, M. 1975. A gamma wear process. IEEE Transactions in Reliability 24(2), 152-153.
  • Alaswad, S. & Xiang, Y. 2017. A review on condition-based maintenance optimization models for stochastically deteriorating system. Reliability Engineering & System Safety 157, 54-63.
  • Barlow, E.E., Proschan F. & Hunter, L.C. 1966. Mathematical Theory of Reliability. Biometrische Zeitschrift 8(4), 278.
  • Bautista B.L., Torres, C.I. & Landesa, P.L. 2020. A condition-based maintenance for complex systems consisting of two different types of components. K. Kolowrocki et al. (Eds.). Safety and Reliability of Systems and Processes, Summer Safety and Reliability Seminar 2020. Gdynia Maritime University, Gdynia, 7-16.
  • Bautista, B.L., Torres, C.I. & Landesa, P.L. 2021. Cox processes in system degradation modelling. K. Kolowrocki et al. (Eds.). Safety and Reliability of Systems and Processes, Summer Safety and Reliability Seminar 2021. Gdynia Maritime University, Gdynia, 7-16.
  • Bertoin, J. 1996. Levy processes. Cambridge University Press, Melbourne, New York.
  • Caballe, N., Castro, I.T., Perez, C.J. & Lanza-Gutierrez, J.M. 2015. A condition-based maintenance of a dependent degradation threshold-shock model in a system with multiple degradation processes. Reliability Engineering & System Safety 134,89-109.
  • Castro, I.T., Caballe, N. & Perez, C.J. 2015. A condition-based maintenance for a system subject to multiple degradation processes and external shocks. International Journal of Systems Science 46(9), 1692-1704.
  • Castro, I.T. & Landesa, L. 2019. A dependent complex degrading system with non-periodic inspection times. Computers & Industrial Engineering 133,241-252.
  • Cha, J.H. & Finkelstein, M. 2017. On some Shock models with Poisson and generalized Poisson Shock processes. ICSA Book Series in Statistics, 67-79.
  • Chen, J.M., Hawkes, A.G., Scalas, E. & Trinh, M. 2018. Performance of information criteria for selection of Hawkes process models of financial data. Quantitative Finance 18(2), 225-235.
  • Chevallier, J. 2017. Mean-field limit of generalized Hawkes processes. Stochastic Processes and their Applications 127(12), 3870-3912.
  • Cui, L., Hawkes, A. & Yi, H. 2020. An elementary derivation of moments of Hawkes processes. Advances in Applied Probability 52, 102-137.
  • Finkelstein, M., Cha, J.H. & Levitin, G. 2020. A hybrid preventive maintenance model for systems with partially observable degradation. IMA Journal of Management Mathematics 31 (3), 345-365.
  • Grandell, J. 1976. Doubly Stochastic Poisson Processes. Lecture Notes in Mathematics 529, Springer, Berlin.
  • Grandell, J. 1991. Aspects of Risk Theory. Springer, New York.
  • Guida, M., Calabria, R., & Pulcini, G. 1989. Bayes inference for a non-homogeneous Poisson process with power intensity law (reliability). IEEE Transactions on Reliability 38(5), 603-609.
  • Huynh, K.T. 2020. Modeling past-dependent partial repairs for condition-based maintenance of continuously deteriorating systems. European Journal of Operational Research 280 (1), 152-163.
  • Huynh, K.T., Grall, A. & Berenguer, C. 2017. Assessment of diagnostic and prognostic condition indices for efficient and robust maintenance decision-making of systems subject to stress corrosion cracking. Reliability Engineering & System Safety 159,237-254.
  • Ishiara, S., Goshima, T., Nomura, K. & Yoshimot, T. 1999. Crack propagation behavior of cermets and cemented carbides under repeated thermal shocks by the improved quench test. Journal of Materials Science 34,629-636.
  • Jia, G. & Gardoni, P. 2018. State-dependent stochastic models: A general stochastic framework for modeling deteriorating engineering systems considering multiple deterioration processes and their interactions. Structural Safety 72,99-110.
  • Kuniewski, S.P., van der Weide J.A.M. & van Noortwijk, J.M. 2009. Sampling inspection for the evaluation of time-dependent reliability of deteriorating systems under imperfect defect detection. Reliability Engineering & System Safety 94,1480-1490.
  • Lawless, J. & Crowder, M. 2004. Covariates and random effects in a gamma process model with application to degradation and failure. Lifetime Data Analysis 10,213-227.
  • Lemoine, A.J & Wenocur, M.L. 1985. On failure modeling. Naval Research Logistics Quarterly 32(3), 497-508.
  • Lemoine, A.J. & Wenocur, M.L. 1986. A note on shot-noise and reliability modeling. Operations Research 34 (2), 320-323.
  • Liu, Z., Ma, X., Yang, J. & Zhao, Y. 2014. Reliability modeling for systems with multiple degradation processes using inverse Gaussian process and copulas. Mathematical Problems in Engineering, Article ID 829597.
  • Marseguerra, M. & Zio, E. 2002. Condition-based maintenance optimization by means of genetic algorithms and Monte-Carlo simulation. Reliability Engineering & System Safety 77(2), 151-165.
  • Oakes, D. 1975. The Markovian self-exciting process. Journal of Applied Probability 12,69-77.
  • Pinsky, M.A. & Karlin, S. 2011. An Introduction to Stochastic Modeling, 4th Edition, Academic Press Elsevier.
  • Pulcini, G. 2013. Modeling the mileage accumulation process with random effects. Communications in Statistics-Theory and Methods 42(15), 2661-2683.
  • Rodriguez-Picon, L.A., Rodriguez-Picon, A.P., Mendez-Gonzalez, L.C., Rodriguez-Borbon, M.I. & Alvarado-Iniesta, A. 2018. Degradation modeling based on gamma process models with random effects. Communications in Statistics -Simulation and Computation 47(6), 1796-1810.
  • Ross, S.M. 2014. Introduction to Probability Models. Elsevier, Rome.
  • Shahraki A.F., Yadav O.P. & Liao H. 2017. A review on degradation modelling and its engineering applications. International Journal of Per-formability Engineering 13(3), 299-314.
  • Straub, D. 2009. Stochastic modeling of deterioration processes through dynamic bayesian networks. Journal of Engineering Mechanics 135(10), 1089-1099.
  • Van Noortwijk, J.M. 2009. A survey of the application of gamma processes in maintenance. Reliability Engineering & System Safety 94(1), 2-21.
  • Wang, Y. & Pham, H. 2012. Modeling the dependent competing risks with multiple degradation processes and random shocks using time-varying copulas. IEEE Transactions on Reliability 61,13-22.
  • Wu, S. & Castro, I.T. 2020. Maintenance policy for a system with a weighted linear combination of degradation processes. European Journal of Operational Research 280(1), 124-133.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-43698ebc-b5f5-4a10-bc19-cdb60d8a5a82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.