Warianty tytułu
Robotic system architectures based on embodied agents
Języki publikacji
Abstrakty
Przestawiono przykłady architektur systemów robotycznych utworzonych z agentów. Wyróżniono osiem typów agentów. Agent upostaciowiony jest typem najogólniejszym. Określono relacje między takimi pojęciami jak: robot, efektor i agent, biorąc pod uwagę wielość tych elementów w systemach robotycznych. Rozważono systemy o zmiennej i niezmiennej strukturze. Wzięto również pod uwagę systemy z wymiennymi i niewymiennymi zadaniami. Zaprezentowane rozważania są użyteczne jako wskazówka przy podejmowaniu strukturalnych decyzji przy projektowaniu systemów robotycznych.
Robotic system architectures based on agents are presented. As agents are classified into eight categories, with the embodied agent being the most general one, the composition of the presented systems varies from that point of view. The relationship between the concepts of: effectors, robots and agents is clarified, taking into account the possible multiplicity of those elements in a robotic system. Fixed and variable structure systems are distinguished. Moreover systems with fixed and exchangeable task are considered. The presentation of the subject relies on already implemented systems. The presented discussion facilitates the design of robotic systems by pointing out the structural decisions the designer has to make.
Rocznik
Tom
Strony
379--394
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
- Instytut Automatyki i lnformatyki Stosowanej, Politechnika Warszawska, ul. Nowowiejska 15/19, 00-665 Warszawa, C.Zielinski@ia.pw.edu.pl
Bibliografia
- [1] Słownik języka polskiego. Warszawa, PWN 1978.
- [2] E. Bonabeau, M. Dorigo, G. Theraulaz. Swarm Intelligence: From Natural to Artificial Systems. New York, Oxford, Oxford University Press 1999.
- [3] Z. Butter, A. Rizzi. Distributed and cellular robots. In: Springer Handbook of Robotics Red. O. Khatib, B. Siciliano. Springer 2008, s. 911-920.
- [4] F. Buschmann et al. Pattern-Oriented Software Architecture. wolumen 1: A System of Patterns. Wiley 1996.
- [5] A. Chibani et al. Ubiquitous robotics: Recent challenges and future trends. Robotics and Autonomous Systems, 2013, wolumen 61, numer 11, s. 1162-1172.
- [6] E. Coste-Maniere, R. Simmons. Architecture, the backbone of robotic systems. In: Robotics and Automation, 2000. Proceedings. ICRA '00. IEEE International Conference on. Proceedings, 2000. wolumen 1, s. 67-72.
- [7] L. de Leonardo et al. Swarmitfix: A multi-robot-based reconfigurable fixture. Industrial Robot, 2013, s. 320-328.
- [8] R. Doriya, S. Mishra, S. Gupta. A brief survey and analysis of multi-robot communication and coordination. In: Computing, Communication Automation (ICCCA), 2015 International Conference on. Proceedings, May, 2015, s. 1014-1021.
- [9] G. Dudek et al. A taxonomy for multi-agent robotics. Autonomous Robots, 1996, wolumen 3, numer 4, s. 375-397.
- [10] A. Farinelli, L. Iocchi, D. Nardi. Multirobot systems: a classification focused on coordination. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), Oct, 2004, wolumen 34, numer 5, s. 2015-2028.
- [11] S. Gagliardi et al. Adaptable Fixturing Heads for Swarm Fixtures: Discussion of Two Designs. In: ASME 11th Biennial Conference on Engineering Systems Design and Analysis (ESDA) Proceedings 2012.
- [12] M. Janiak, C. Zieliński. Platforma mobilna Rex - struktura układu sterowania. In: Postępy robotyki. Prace Naukowe- Elektronika, z.194. (XIII Krajowa Konferencja Robotyki. Kudowa Zdrój, 2-6 Lipca 2014). Proceedings Red. K. Tchoń, C. Zieliński, s. 45-54.
- [13] M. Janiak, C. Zieliński. Control system architecture for the investigation of motion control algorithms on an example of the mobile platform rex. Bulletin of the Polish Academy of Sciences - Technical Sciences, 2015, wolumen 63, numer 3, s. 667-678.
- [14] T. Kornuta, C. Zieliński. Robot control system design exemplified by multicamera visual servoing. Journal of Intelligent & Robotic Systems, 2013, wolumen 77, numer 3-4, s. 499-524.
- [15] D. Kortenkamp, R. Simmons, D. Brugali. Robotic systems architectures and programming. In: Springer Handbook of Robotics, 2nd Edition Red. B. Siciliano, O. Khatib. Springer 2016, s. 283-306.
- [16] L. Leonardo et al. Developing a New Concept of Self Reconfigurable Intelligent Swarm Fixtures. 2012, s. 321-331.
- [17] M. Lutz. Programming Python. O'Reilly Media, 2010.
- [18] W. Lutz, W. Sanderson, S. Scherbov. The coming acceleration of global population ageing. Nature, February, 2008, wolumen 451 (7179), s. 716-719.
- [19] M. Mano. Computer System Architecture. Englewood Cliffs, New Jersej, USA, Prentice-Hall 1976.
- [20] M. J. Matarić. Issues and approaches in the design of collective autonomous agents. Robotics and Autonomous Systems, 1995, wolumen 16, numer 2, s. 321-331.
- [21] M. J. Matarić, F. Michaud. The Handbook of Robotics. Springer 2008, rozdział Behavior-Based Systems, s. 891-909.
- [22] P. A. Mitkas. Assistive robots as future caregivers: The rapp approach. In: Progress in Automation, Robotics and Measuring Techniques. Vol. 2 Robotics. Proceedings Red. R. Szewczyk, C. Zieliński, M. Kaliczyńska. Springer, 2015. wolumen 351 serii Advances in Intelligent Systems and Computing (AISC), s. 171-179.
- [23] R. Molfino, M. Zoppi, D. Zlatanov. Reconfigurable swarm fixtures. In: ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots. Proceedings, June 22-24, 2009, s. 730-735.
- [24] K. Neumann. US patent number 4732525, 1988.
- [25] L. E. Parker. Multiple mobile robot systems. In: Springer Handbook of Robotics Red. O. Khatib, B. Siciliano. Springer 2008, s. 921-941.
- [26] F. Psomopoulos et al. Rapp system architecture. In: IROS 2014 - Assistance and Service Robotics in a Human Environment. Proceedings. Workshop in conjunction with IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, Illinois, September 14, 2014, s. 14-18.
- [27] S. Reppou, G. Karagiannis. Social inclusion with robots: A RAPP case study using NAO for technology illiterate elderly at ormylia foundation. In: Progress in Automation, Robotics and Measuring Techniques. Vol. 2 Robotics. Proceedings Red. R. Szewczyk, C. Zieliński, M. Kaliczyńska. Springer, 2015. wolumen 351 serii Advances in Intelligent Systems and Computing (A/SC), s. 233-241.
- [28] S. Reppou et al. RAPP: A robotic-oriented ecosystem for delivering smart user empowering applications for older people. International Journal of Social Robotics, June, 2016.
- [29] S. Russell, P. Norvig. Artificial Intelligence: A Modern Approach. Upper Saddle River, N.J., Prentice Hall 1995.
- [30] W. Szynkiewicz, T. Zielińska, W. Kasprzak. Robotized machining of big work pieces: Localization of supporting heads. Frontiers of Mechanical Engineering in China, 2010, wolumen 5, numer 4, s. 357-369.
- [31] K. Tchoń, J. Jakubiak. Endogenous configuration space approach to mobile manipulators: A derivation and performance assessment of Jacobian inverse kinematics algorithms. International Journal of Control, 2003, wolumen 76, numer 14, s. 1387-1419.
- [32] E.G. Tsardoulias et al. Merging robotics and aal ontologies: The RAPP methodology. In: Progress in Automation, Robotics and Measuring Techniques. Vol. 2 Robotics. Proceedings Red. R. Szewczyk, C. Zieliński, M. Kaliczyńska. Springer, 2015. wolumen 351 serii Advances in Intelligent Systems and Computing (AISC), s. 285-298.
- [33] E. G. Tsardoulias et al. Towards an integrated robotics architecture for social inclusion - the RAPP paradigm. Cognitive Systems Research, 2016.
- [34] T. Winiarski, K. Banachowicz, D. Seredyński. Multi-sensory feedback control in door approaching and opening. In: Intelligent Systems'2014 Red. D. Filev et al., wolumen 323 serii Advances in Intelligent Systems and Computing. Springer 2015, s. 57-70.
- [35] T. Winiarski, K. Banachowicz, D. Seredyński. Two mode impedance control of Velma service robot redundant arm. In: Progress in Automation, Robotics and Measuring Techniques. Vol. 2 Robotics. Proceedings Red. R. Szewczyk, C. Zieliński, M. Kaliczyńska. wolumen 351 serii Advances in Intelligent Systems and Computing (AISC). Springer 2015, s. 319-328.
- [36] M. Yim et al. Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robotics & Automation Magazine, March, 2007, wolumen 14, numer 1, s. 43-52.
- [37] A. Zalewski. Modelling and evaluation of software architectures. Prace Naukowe Politechniki Warszawskiej. Elektronika, 2013, wolumen 187.
- [38] T. Zielińska et al. Path planning for robotized mobile supports. Journal of Mechanism and Machine Theory, 2014, wolumen 78, s. 51-64.
- [39] C. Zieliński et al. Control and programming of a multi-robot-based reconfigurable fixture. Industrial Robot: An International Journal, 2013, wolumen 40, numer 4, s. 329-336.
- [40] C. Zieliński et al. Metoda projektowania układów sterowania autonomicznych robotów mobilnych. Część 2. Przykład zastosowania. Pomiary Automatyka Robotyka, 2011, numer 10, s. 84-91.
- [41] C. Zieliński et al. Specification of a multi-agent robot-based reconfigurable fixture control system. Robot Motion & Control 2011 (Lecture Notes in Control & Information Sciences), 2012, wolumen 422, s. 171-182.
- [42] C. Zieliński, T. Winiarski. General specification of multi-robot control system structures. Bulletin of the Polish Academy of Sciences –Technical Sciences, 2010, wolumen 58, numer 1, s. 15-28.
- [43] C. Zieliński et al. Interfejs operatorski robota prototypowego na bazie komputera pc z klawiaturą i monitorem umożliwiającym ruchy ręczne w przestrzeni konfiguracyjnej i operacyjnej, a także uruchamianie zadania w trybie automatycznym. Raport instytutowy 2014-12, Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej, Czerwiec, 2014.
- [44] C. Zieliński, T. Kornuta. Diagnostic requirements in multi-robot systems. In: Intelligent Systems in Technical and Medical Diagnostics, Red. J. Korbicz, M. Kowal, wolumen 230 serii Advances in Intelligent Systems and Computing. Springer 2014, s. 345-356.
- [45] C. Zieliński, T. Kornuta, T. Winiarski. A systematic method of designing control systems for service and field robots. In: 19-th IEEE International Conference on Methods and Models in Automation and Robotics, MMAR. Proceedings. IEEE, 2014, s. 1-14.
- [46] C. Zieliński et al. Variable structure robot control systems: The RAPP approach. Robotics and Autonomous Systems, wolumen 94, 2017, s. 226-244.
- [47] C. Zieliński, Piotr Trojanek. Stigmergic cooperation of autonomous robots. Journal of Mechanism and Machine Theory, wolumen 44, April, 2009, s. 656-670.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-435f3527-d5f8-4a13-8a9f-dd35cd516095