Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 21, No. 3 | 293-302
Tytuł artykułu

Measurement of the maximum value of non-uniform strain using a temperature-insensitive fibre Bragg grating method

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an optoelectronic method for measuring the maximum value of non-uniformly distributed strain at varying temperature. Use of conjugate a gradient algorithm and a sensor model makes it possible to determine the maximum non-uniform strain value and the temperature at which the measurement is performed. The described sensor system enables the maximum strain value to be determined with a linear resolution of 0.003 m. A specially designed measurement system is proposed to verify the plausibility of using uniform fibre Bragg gratings for the simultaneous measurement of two quantities. The possibility of using the spectrum of two grating sensors to determine the maximum value of a non-uniform distribution of strain and temperature values is demonstrated.
Wydawca

Rocznik
Strony
293-302
Opis fizyczny
Bibliogr. 32 poz., il., wykr.
Twórcy
autor
  • Institute of Electronics and Information Techniques, Lublin University of Technology, 36 Nadbystrzańska St., 20-618 Lublin, Poland, p.kisala@pollub.pl
Bibliografia
  • 1. J. H. Chen, X. G. Huang, W. X. He, and J. Tao, “A parallel-multipoint fibre-optic temperature sensor based on Fresnel reflection”, Opt. Laser Technol. 43, 1424-1427 (2011).
  • 2. G. Breglio, A. Cusano, A. Irace, and A. Cutolo, “Fibre optic sensor arrays: a new method to improve multiplexing capability with a low complexity approach”, Sensor. Actuat. B100, 147-150 (2004).
  • 3. B. W. Jang, J. R. Lee, S. O. Park, C. G. Kim, and J. S. Kim, “A health management algorithm for composite train carbody based on FEM/FBG hybrid method”, Compos. Struct. 92, 1019-1026 (2010).
  • 4. T. Váry and P. Markoš, “Propagation of surface plasmon polaritons through gradient index and periodic structures”, Opto-Electron. Rev. 18, 400-407 (2010).
  • 5. P. Karasiński, “Sensor properties of planar waveguide structures with grating couplers”, Opto-Electron. Rev. 15, 168-178 (2007).
  • 6. P. Karasiński, “Embossable grating couplers for planar evanescent wave sensors”, Opto-Electron. Rev. 19, 10-21 (2011).
  • 7. T. Pustelny, I. Zielonka, C. Tyszkiewicz, P. Karasiński, and B. Pustelny, “Impressing technology of optical Bragg's gratings on planar optical sol-gel waveguides”, Opto-Electron. Rev. 14, 161-166 (2006).
  • 8. A. Aslanyan and A. Galstyan, “Optimal period for diffraction grating recorded in polymer dispersed liquid crystals”, Opto-Electron. Rev. 15, 66-70 (2007).
  • 9. H. V. Baghdasaryan, T. M. Knyazyan, T. H. Baghdasaryan, B. Witzigmann, and F. Roemer, “Absorption loss influence on optical characteristics of multilayer distributed Bragg reflector: wavelength-scale analysis by the method of single expression” Opto-Electron. Rev. 18, 438-445 (2010).
  • 10. M. Detka and Z. Kaczmarek, “Distributed strain reconstruction based on a fibre Bragg grating reflection spectrum, Metrol. Meas. Syst. 20, 53-64 (2013).
  • 11. J. R. Lee, S. Y. Chong, C. Y. Yun, and D. J. Yoon, “A lasing wavelength stabilized simultaneous multipoint acoustic sensing system using pressure-coupled fibre Bragg gratings”, Opt. Laser Eng. 49, 110-120 (2011).
  • 12. Y. Dai, Y. Liu, J. Leng, G. Deng, and A. Asundi, “A novel time-division multiplexing fibre Bragg grating sensor interrogatorfor structural health monitoring”, Opt. Laser Eng. 47, 1028-1033 (2009).
  • 13. G. Rajan, K. Mileńko, P. Lesiak, Y. Semenova, A. Boczkowska, M. Ramakrishnan, K. Jędrzejewski, A. Domański, T. Woliński and G. Farrell, “A hybrid fibre optic sensing system for simultaneous strain and temperature measurement and its applications”, Photonics Letters of Poland 2, 46-48 (2010).
  • 14. G. Rajan, M. Ramakrishnan, Y. Semenova, K. Milenko, P. Lesiak, A. W. Domanski, T. R. Wolinski and G. Farrell, “A photonic crystal fibre and fibre bragg grating-based hybrid fibre-optic sensor system”, IEEE Sensor J. 12, 39-43 (2012).
  • 15. A. W. Domański, P. Lesiak, K. Mileńko, A. Boczkowska, D. Budaszewski, S. Ertman and T. R. Woliński, “Temperature-in-sensitive fibre optic deformation sensor embedded in composite material”, Photonics Letters of Poland 1, 121-123 (2009).
  • 16. A. W. Domański, P. Lesiak, K. Milenko, D. Budaszewski, M. Chychłowski, S. Ertman, M. Tefelska, T. R. Woliński, K. Jędrzejewski, L. Lewandowski, W. Jasiewicz, J. Helsztyński and A. Boczkowska, “Comparison of Bragg and polarimetric optical fibre sensors for stress monitoring in composite materials”, Acta Phys. Pol. A116, 294-297 (2009).
  • 17. P. Kisała, “Application of inverse analysis to determine the strain distribution with optoelectronic method insensitive to temperature changes”, Appl. Opt. 51, 3599-3604 (2012).
  • 18. J. Zygarlicki and J. Mroczka, “Short time algorithm of power waveforms fundamental harmonic estimation with use of prony’s methods”, Metrol. Meas. Syst. 18, 371-378 (2011).
  • 19. M. Szmajda, K. Górecki, and J. Mroczka, “Gabor transform, SPWVD, Gabor-Wigner transform and wavelet transform - tools for power quality monitoring”, Metrol. Meas. Syst. 16, 383-396 (2010).
  • 20. J. Mroczka and D. Szczuczyński, “Improved regularized solution of the inverse problem in turbidimetric measurements”, Appl. Opt. 49, 4591-4603 (2010).
  • 21. J. Mroczka and D. Szczuczyński, “Simulation research on improved regularized solution of inverse problem in spectral extinction measurements”, Appl. Opt. 51, 1715-1723 (2012).
  • 22. J. Mroczka and D. Szczuczyński, “Inverse problems formulated in terms of first-kind Fredholm integral equations in indirect measurements”, Metrol. Meas. Syst. 16, 333-357 (2009).
  • 23. Z. J. Shi and J. Shen, “Convergence of PRP method with new nonmonotone line search”, Appl. Math. Comput. 181, 423-431 (2006).
  • 24. L. Armijo, “Minimization of functions having Lipschitz continuous first partial derivatives”, Pac. J. Math. 16, 1-3 (1966).
  • 25. Z. J. Shi and J. Shen, “Convergence of the Polak-Ribiere-Polyak conjugate gradient method”, Nonlinear Anal. 66, 1428-1441 (2007).
  • 26. A. Qu, D. Li, and Min L., “The convergence rate of a restart MFR conjugate gradient method with inexact line search”, Appl. Math. Comput. 218, 11380-11390 (2012).
  • 27. P. C. Won, Y. Lai, W. Zhang, J. S. Leng, and J. A. R. Williams, “Distributed temperature measurement using a Fabry-Perot effect based chirped fibre Bragg grating”, Opt. Commun. 265, 494-499 (2006).
  • 28. D. Xiaowei, L. Wenkai, W. Dongyu, and W. Menglong, “Study on Fabry-Perot cavity consisting of two chirped fibre Bragg gratings”, Opt. Fiber Techn. 18, 209-214 (2012).
  • 29. H. Kogelnik, “Filter Response of Nonuniform Almost-Periodic Structures”, AT&T Tech. J. 55, 109-125 (1976).
  • 30. H. Kogelnik and C. V. Shank, “Coupled Wave theory of distributed feedback lasers”, J. Appl. Physics 43, 2327-2335 (1972).
  • 31. E. L. Klamer, D. A. Hordijk, and M. C. J. Hermes, “The influence of temperature on RC beams strengthened with externally bonded CFRP reinforcement”, HERON 53, 157-186 (2008).
  • 32. S. Adamczak, J. Bochnia, and C. Kundera, “Stress and strain measurements in static tensile tests”, Metrol. Meas. Syst. 19, 531-540 (2012).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4352b1ee-cdd2-42e1-bfbb-14addf76a424
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.