Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | Vol. 37, No. 4 | 285--305
Tytuł artykułu

EEG Feature Selection for BCI Based on Motor Imaginary Task

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The greatest problem met when a Brain Computer Interface (BCI) based on electroencephalographic (EEG) signals is to be created is a huge dimensionality of EEG feature space and at the same time very limited number of possible observations. The first is a result of a huge amount of data which can be recorded during the single trial, the latter - the result of individuality of EEG signals, which can significantly differ in different frequency bands determined for different subjects. These two reasons force the brain researches to reduce the huge EEG feature space to only some features, those which allow to build a BCI of a satisfactory accuracy. The paper presents the comparison of two methods of feature selection – blind source separation (BSS) method and method using interpretable features. The comparison was carried out with the data set recorded during EEG session with a subject whose task was to imagine movements of right and left hand.
Wydawca

Rocznik
Strony
285--305
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
  • West Pomeranian University of Technology of Szczecin, Faculty of Computer Science, ul. Żołnierska 52, 71-210 Szczecin, Poland
Bibliografia
  • [1] Boord P., Craig A., Tran Y., Nguyen H.: Discrimination of left and right leg motor imagery for brain-computer interfaces, Medical & Biological Engineering& Computing, 48, 4, 2010, 343-350.
  • [2] Hammon P.S., de Sa V.R., Preprocessing and meta-classification for brain-computer interfaces. IEEE Transactions on Biomedical Engineering, 54, 3, 2007, 518-525.
  • [3] II BCI Competition; http://bbci.de/competition/ii/index.html; data set III - motor imaginary
  • [4] Kohavi R., John G.H., Wrappers for feature subset selection, Artificial Intelligence, 1-2, 1997, 273-324.
  • [5] Lakany H., Conway B. A., Understanding intention of movement from electroencephalograms, Expert Systems, 24, 5, 2007, 295-304.
  • [6] Lebedev M.A., Nicolelis M.A.L., Brain-machine interfaces: past, present and future. Trends in Neurosciences, 29, 9, 2006, 536-546.
  • [7] Leocani L., Toro C., Zhuang P., Gerloff C., Hallet M., Event-related desynchronization in reaction time paradigms: a comparison with event-related potentials and corticospinal excitability, Clinical Neurophysiology, 112, 2001, 923-930.
  • [8] Masters T., Practical Neural Networks Recipes in C++, Academic Press Inc, 1993.
  • [9] Peterson D. A., Knight J. N., Kirby M. J., Anderson Ch. W., Thaut M. H., Feature Selection and Blind Source Separation in an EEG-Based Brain-Computer Interface, EURASIP Journal on Applied Signal Processing, 19, 2005, 3128-3140.
  • [10] Pfurtscheller G., Flotzinger D., Kalcher J., Brain-computer interface - a new communication device for handicapped persons, Journal of MicrocomputerApplication, 16, 1993, 293-299.
  • [11] Pfurtscheller G., Lopes da Silva F. H., Event-related EEG/MEG synchronization and desynchronization: basic principles, Clinical Neurophysiology, 110, 1999, 1842-1857
  • [12] Raudys S. J., Jain A. K., Small sample size effects in statistical pattern recognition: Recommendations for practitioners. IEEE Transactions on Pattern Analysis andMachine Intelligence, 13, 3, 1991, 252-264.
  • [13] Reed R. D., Marks II R. J., Neural Smithing, Supervised Learning in FeedforwardArtificial Neural Networks, MIT Press, London, England, 1998
  • [14] Wolpaw J. R., Birbaumer N., McFarland D. J., Pfurtscheller G., Vaughan T. M., Brain-computer interfaces for communication and control, Neurophysiology 113, 2002, 767-791.
  • [15] Zhang G. P., Neural Networks for Classification: A Survey, IEEE Transactions onSystems
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-434fed62-a621-47b6-a3ff-7473f04fb1dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.