Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 22, no. 3 | art. no. e144
Tytuł artykułu

Development of metakaolin‑based geopolymer rubberized concrete: fresh and hardened properties

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
During the past two decades, geopolymer concrete has been investigated as a sustainable alternative to Portland cement concrete, which is known to generate a huge amount of CO2 in the environment. This study focuses on the assessment of the fresh and hardened mechanical properties and durability of metakaolin (MK)-based geopolymer rubberized concrete. Crumb rubber was derived from discarded waste tires, another pollution source to the environment, and incorporated in concrete as fine aggregate replacement in ratios from 10 to 50% by volume. The performance of the MK-based geopolymer rubberized concrete is discussed based on its workability, air content, stress-strain behavior (including compressive strength and modulus of elasticity), flexural strength, dry unit weight and rapid chloride penetrability. The results show that the proposed sustainable concrete mixes achieve acceptable fresh and hardened mechanical and durability properties. The compressive strength when crumb rubber replaces fine aggregates in volumetric percentages between 10 and 40% are in the range of 28.7-39.7 MPa. Furthermore, the unit weight and modulus of elasticity of the MK-based geopolymer rubberized concrete mix with 40% rubber replacement are 14.9 GPa and 2134 kg/m3, respectively. This can promote a potentially large market for the MK-based geopolymer rubberized concrete products in applications where the priority is for decreasing self-weight and increasing flexibility rather than strength.
Wydawca

Rocznik
Strony
art. no. e144
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
  • Chair of Research and Studies in Strengthening and Rehabilitation of Structures, Depatment of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
  • Chair of Research and Studies in Strengthening and Rehabilitation of Structures, Depatment of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
autor
  • Chair of Research and Studies in Strengthening and Rehabilitation of Structures, Depatment of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
  • Chair of Research and Studies in Strengthening and Rehabilitation of Structures, Depatment of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
  • Chair of Research and Studies in Strengthening and Rehabilitation of Structures, Depatment of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia, ysalloum@ksu.edu.sa
Bibliografia
  • 1. Liu F, Chen G, Li L, Guo Y. Study of impact performance of rubber reinforced concrete. Constr Build Mater. 2012;36:604-16.
  • 2. Medina NF, Medina DF, Hernández-Olivares F, Navacerrada M. Mechanical and thermal properties of concrete incorporating rubber and fibres from tyre recycling. Constr Build Mater. 2017;144:563-73.
  • 3. Thomas BS, Gupta RC. A comprehensive review on the applications of waste tire rubber in cement concrete. Renew Sustain Energy Rev. 2016;54:1323-33.
  • 4. Batayneh M, Marie I, Asi I. Promoting the use of crumb rubber concrete in developing countries. Waste Manag. 2008;28(11):2171-6.
  • 5. Al-Tayeb MM, Bakar BA, Ismail H, Akil HM. Impact resistance of concrete with partial replacements of sand and cement by waste rubber. Polym Plast Technol Eng. 2012;51(12):1230-6.
  • 6. Onuaguluchi O, Panesar DK. Hardened properties of concrete mixtures containing pre-coated crumb rubber and silica fume. J Clean Prod. 2014;82:125-31.
  • 7. Dong Q, Huang B, Shu X. Rubber modified concrete improved by chemically active coating and silane coupling agent. Constr Build Mater. 2013;48:116-23.
  • 8. Richardson AE, Coventry K, Ward G. Freeze/thaw protection of concrete with optimum rubber crumb content. J Clean Prod. 2012;23(1):96-103.
  • 9. Meddah A, Beddar M, Bali A. Use of shredded rubber tire aggregates for roller compacted concrete pavement. J Clean Prod. 2014;72:187-92.
  • 10. Ganesan N, Raj B, Shashikala AP. Behavior of self-consolidating rubberized concrete beam-column joints. ACI Mater J. 2013. https://doi.org/10.14359/51686 337.
  • 11. Li Z, Li F, Li J. Properties of concrete incorporating rubber tyre particles. Mag Concr Res. 1998;50(4):297-304.
  • 12. Pelisser F, Zavarise N, Longo TA, Bernardin AM. Concrete made with recycled tire rubber: effect of alkaline activation and silica fume addition. J Clean Prod. 2011;19(6):757-63.
  • 13. Luukkonen T, Abdollahnejad Z, Yliniemi J, Kinnunen P, Illikainen M. One-part alkali-activated materials: a review. Cem Concr Res. 2018;103:21-34.
  • 14. Ding Y, Dai J-G, Shi C-J. Mechanical properties of alkali-activated concrete: a state-of-the-art review. Constr Build Mater. 2016;127:68-79.
  • 15. Fang G, Ho WK, Tu W, Zhang M. Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature. Constr Build Mater. 2018;172:476-87.
  • 16. Gandoman M, Kokabi M. Sound barrier properties of sustainable waste rubber/geopolymer concretes. Iran Polym J. 2015;24(2):105-12.
  • 17. Park Y, Abolmaali A, Kim YH, Ghahremannejad M. Compressive strength of fly ash-based geopolymer concrete with crumb rubber partially replacing sand. Constr Build Mater. 2016;118:43-51.
  • 18. Dehdezi PK, Erdem S, Blankson MA. Physico-mechanical, microstructural and dynamic properties of newly developed artificial fly ash based lightweight aggregate-rubber concrete composite. Compos B Eng. 2015;79:451-5.
  • 19. Azmi AA, Abdullah MMAB, Ghazali CMR, Sandu AV, Hussin K. Effect of crumb rubber on compressive strength of fly ash based geopolymer concrete. In: MATEC web of conferences. 2016: EDP Sciences.
  • 20. Luhar S, Chaudhary S, Luhar I. Development of rubberized geopolymer concrete: strength and durability studies. Constr Build Mater. 2019;204:740-53.
  • 21. Wongsa A, Sata V, Nematollahi B, Sanjayan J, Chindaprasirt P. Mechanical and thermal properties of lightweight geopolymer mortar incorporating crumb rubber. J Clean Prod. 2018;195:1069-80.
  • 22. Aly AM, El-Feky M, Kohail M, Nasr E-SA. Performance of geopolymer concrete containing recycled rubber. Constr Build Mater. 2019;207:136-44.
  • 23. Alghannam M, Albidah A, Abbas H, Al-Salloum Y. Influence of critical parameters of mix proportions on properties of MK-based geopolymer concrete. Arab J Sci Eng. 2021;46(5):4399-408.
  • 24. Albidah A, Alghannam M, Abbas H, Almusallam T, Al-Salloum Y. Characteristics of metakaolin-based geopolymer concrete for different mix design parameters. J Market Res. 2021;10:84-98.
  • 25. Mehdipour S, Nikbin IM, Dezhampanah S, Mohebbi R, Moghadam H, Charkhtab S, Moradi A. Mechanical properties, durability and environmental evaluation of rubberized concrete incorporating steel fiber and metakaolin at elevated temperatures. J Clean Prod. 2020;254: 120126.
  • 26. ASTM. C136: Standard test method for sieve analysis of fine and coarse aggregates. West Conshohocken: ASTM International; 2006. https://doi.org/10.1520/C0136-06.
  • 27. Khatib Z, Bayomy F. Rubberized portland cement concrete. J Mater Civ Eng. 1999;11(3):206-13.
  • 28. Raffoul S, Garcia R, Pilakoutas K, Guadagnini M, Medina NF. Optimisation of rubberised concrete with high rubber content: An experimental investigation. Constr Build Mater. 2016;124:391-404.
  • 29. BSI. EN 12350-2: testing fresh concrete, part 2: slump-test. London: BSI; 2009. p. 2009.
  • 30. ASTM, C143/C143M-20: Standard Test Method for Slump of Hydraulic-Cement Concrete, ASTM International, West Conshohocken, PA, www.astm.org 2020.
  • 31. ASTM. C231/C231M-17a: standard test method for air content of freshly mixed concrete by the pressure method. ASTM International, West Conshohocken, PA. 2017. www.astm.org.
  • 32. ASTM. C39/C39M-21: standard test method for compressive strength of cylindrical concrete specimens. ASTM International, West Conshohocken, PA. 2021. www.astm.org.
  • 33. ASTM. C469/C469M-14e1: standard test method for static modulus of elasticity and Poisson's ratio of concrete in compression. ASTM International, West Conshohocken, PA. 2014. www.astm.org.
  • 34. ASTM. C642-13: standard test method for density, absorption, and voids in hardened concrete. ASTM International, West Conshohocken, PA, 2013. www.astm.org.
  • 35. ASTM. C1202-19: standard test method for electrical indication of concrete’s ability to resist chloride ion penetration. ASTM International, West Conshohocken, PA. 2019. www.astm.org.
  • 36. Alsaif A, Koutas L, Bernal SA, Guadagnini M, Pilakoutas K. Mechanical performance of steel fibre reinforced rubberised concrete for flexible concrete pavements. Constr Build Mater. 2018;172:533-43.
  • 37. Abaza OA, Hussein ZS. Flexural behavior of steel fiber-reinforced rubberized concrete. J Mater Civ Eng. 2015;28(1):04015076.
  • 38. ACI. Committee 201.2R-16, Guide to durable concrete. Farmington Hills: American Concrete Institute; 2016.
  • 39. Khaloo AR, Dehestani M, Rahmatabadi P. Mechanical properties of concrete containing a high volume of tire-rubber particles. Waste Manag. 2008;28(12):2472-82.
  • 40. Aslani F, Deghani A, Asif Z. Development of lightweight rubberized geopolymer concrete by using polystyrene and recycled crumb-rubber aggregates. J Mater Civ Eng. 2020;32(2):04019345.
  • 41. Kardos AJ, Durham SA. Strength, durability, and environmental properties of concrete utilizing recycled tire particles for pavement applications. Constr Build Mater. 2015;98:832-45.
  • 42. Alsaif A, Garciaa R, Figueiredoa FP, Neocleousb K, Christofeb A, Guadagnini M, Pilakoutas K. Fatigue performance of flexible steel fibre reinforced rubberised concrete pavement. Eng Struct. 2019;193:170-83.
  • 43. ACI. Committee 318-14 building code requirements for structural concrete : an ACI standard; commentary on building code requirements for structural concrete (ACI 318R-14). Michigan: American Concrete Institute; 2014.
  • 44. Albidah A, Alsaif A, Abadel A, Abbas H, Al-Salloum Y. Role of recycled vehicle tires quantity and size on the properties of metakaolin-based geopolymer rubberized concrete. J Mater Res Technol. 2022;18:2593-607. https://doi.org/10.1016/j.jmrt.2022.03.103.
  • 45. Xie J-H, Guo Y-C, Liu L-S, Xie Z-H. Compressive and flexural behaviours of a new steel-fibre-reinforced recycled aggregate concrete with crumb rubber. Constr Build Mater. 2015;79:263-72.
  • 46. BSI. EN 1992-1-1:2004+A1:2014 Eurocode 2: design of concrete structures. General rules and rules for buildings. London: BSI; 2014.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-433b7b9f-2e35-4be9-bd5a-203fa6a5273c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.