Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2021 | Vol. 69, no. 1 | 125--134
Tytuł artykułu

Target-oriented reverse time migration in transverse isotropy media

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reverse time migration (RTM) is a high-precision imaging method for complex structures. However, without considering seismic anisotropy of the subsurface, RTM utilizing the anisotropic seismic data may produce blurred structure images with incorrect positions. Moreover, some exploration targets with insufcient illumination cannot be efectively identifed in the migration profle, especially the subsalt structure which is usually the favorable petroleum region for the hydrocarbon reservoir. Therefore, we develop a target-oriented RTM in transverse isotropy media (TO-TIRTM). Instead of classical RTM, the novel method extracts wavefelds that carry relatively more information about the exploration target to image structure. In the imaging condition, the constraint with excitation time is introduced to eliminate the interference of multipath on the image. Using synthetic examples, we determined that the kinematic characteristic of wavefeld is closely related to aniso tropic parameters, and the proposed method has prominent advantages over conventional RTM for imaging insufcient illumination structure.
Wydawca

Czasopismo
Rocznik
Strony
125--134
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
  • Northeast Petroleum University, Daqing 163318, Heilongjiang, China
autor
autor
  • Exploration and Development, Research Institute of Daqing Oilfeld Co Ltd, Daqing 163712, Heilongjiang, China
  • Northeast Petroleum University, Daqing 163318, Heilongjiang, China
autor
  • Northeast Petroleum University, Daqing 163318, Heilongjiang, China
Bibliografia
  • 1. Alkhalifah T (1997) Seismic data processing in vertically inhomogeneous TI media. Geophysics 62:662–675
  • 2. Alkhalifah T (1998) Acoustic approximations for processing in transversely isotropic media. Geophysics 2(63):623–631
  • 3. Alkhalifah T (2000) An acoustic wave equation for anisotropic media. Geophysics 4(65):1239–1250
  • 4. Baysal E, Kosloff D, Sherwood J (1983) Reverse time migration. Geophysics 48(11):1514–1524
  • 5. Behura J, Wapenaar K, Snieder R (2014) Autofocus Imaging: Image reconstruction based on inverse scattering theory. Geophys 79(3):A19–A26
  • 6. Chen B, Jia X (2014) Staining algorithm for seismic modeling and migration. Geophysics 79(4):S121–S129
  • 7. Fletcher RP, Du X, Fowler PJ (2009) Reverse time migration in tilted transversely isotropic (TTI) media. Geophysics 74(6):WCA179–WCA187
  • 8. Fowler PJ, Du X, Fletcher RP (2010) Coupled equations for reverse time migration in transversely isotropic media. Geophysics 75(1):S11–S22
  • 9. Guan H, Dussaud E (2011) Techniques for an efficient implementation of RTM in TTI media. In: 81st annual international meeting, SEG, expanded abstracts,pp 3393–3397
  • 10. Guo X, Liu H, Shi Y (2018) Improving waveform inversion using modified interferometric imaging condition. Acta Geophys 66(1):71–80
  • 11. Hestholm S. (2007) Acoustic VTI modeling using high-order finite-differences. In: 77th annual international meeting, SEG, expanded abstracts, vol 26(1), pp 139–143
  • 12. Ke X, Shi Y, Wang WH (2018) An efficient wavefield simulation and reconstruction method for least squares reverse time migration. J Seism Explor 27(2):183–200
  • 13. Liu Q, Zhang J, Lu Y et al (2019) Fast Poynting-vector based wave-mode separation and RTM in 2D elastic TI media. J Comput Phys 381:27–41
  • 14. Liu YK, Chang X, Jin DG et al (2011) Reverse time migration of multiples for subsalt imaging. Geophysics 76(5):WB209–WB216
  • 15. Liu Y, Li CC, Mou YG (1998) Finite-difference numerical modeling of any even-order accuracy. Oil Geophys Prospect 33(1):1–10
  • 16. Lu Y, Liu Q, Zhang J et al (2019) Poynting and polarization vectors based wavefield decomposition and their application on elastic reverse time migration in 2D transversely isotropic media. Geophys Prospect 67(5):1296–1311
  • 17. McMechan GA (1983) Migration by extrapolation of time-dependent boundary values. Geophys Prospect 31(3):413–420
  • 18. Nguyen BD, McMechan GA (2013) Excitation amplitude imaging condition for prestack reverse-time migration. Geophysics 78(1):S37–S46
  • 19. Shi Y, Wang Y (2016) Reverse time migration of 3D vertical seismic profile data. Geophysics 81(1):S31–S38
  • 20. Thomsen L (1986) Weak elastic anisotropy. Geophysics 10(51):661–672
  • 21. Whitmore ND (1983) Iterative depth migration by backward time propagation. In: 53rd annual international meeting, SEG, expanded abstracts, pp 827–830
  • 22. Xu S, Zhou HB (2014) Accurate simulations of pure quasi-P-waves in complex anisotropic media. Geophysics 79(6):T341–T348
  • 23. Yuan S, Wang S, Tian N, Wang Z (2016) Stable inversion-based multitrace deabsorption method for spatial continuity preservation and weak signal compensation. Geophysics 81(3):V199–V212
  • 24. Zhou HZ, Zhang GQ (2009) Removing S-wave noise in TTI reverse time migration. In: 79th annual international meeting, SEG, expanded abstracts, pp 2849–2853
  • 25. Zhu T (2017) Numerical simulation of seismic wave propagation in viscoelastic-anisotropic media using frequency-independent Q wave equation. Geophysics 82(4):WA1–WA10
  • 26. Zhu T, Tong B (2019) Efficient modeling of wave propagation in a vertical transversely isotropic attenuative medium based on fractional Laplacian. Geophysics 84(3):T121–T131
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-42c1a3bd-1ecd-4a07-822b-ef361622bcd0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.