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Abstract

Marine diesel engines work in an environment with multiple excitation sources. Effective feature extraction and fault 
diagnosis of diesel engine vibration signals have become a hot research topic. Time-domain synchronous averaging 
(TSA) can effectively handle vibration signals. However, the key phase signal required for TSA is difficult to obtain. 
During signal processing, it can result in the loss of information on fault features. In addition, frequency multiplication 
signal waveforms are mixed. To address this problem, a multi-scale time-domain averaging decomposition (MTAD) 
method is proposed and combined with signal-to-image conversion and a convolutional neural network (CNN), 
to perform fault diagnosis on a marine diesel engine. Firstly, the vibration signals are decomposed by MTAD. The 
MTAD method does not require the acquisition of the key phase signal and can effectively overcome signal aliasing. 
Secondly, the decomposed signal components are converted into 2-D images by signal-to-image conversion. Finally, 
the 2-D images are input into the CNN for adaptive feature extraction and fault diagnosis. Through experiments, it is 
verified that the proposed method has certain noise immunity and superiority in marine diesel engine fault diagnosis.

Keywords: multi-scale time-domain averaging decomposition; signal-to-conversion; CNN; marine diesel engine; fault diagnosis

introduction

The diesel engine is the heart of the cabin. It operates 
in an environment with multiple excitation sources and 
its vibration signals are characterised by non-linearity and 
non-stationarity [1]. Research into fault diagnosis is very 
important, to reduce downtime and improve navigation 
safety.

In recent years, relevant scholars have analysed vibration 
signals from the time-frequency domain perspective. The 
main methods include short-time Fourier transform (STFT) 
[2], wavelet transforms (WT) [3-5], Hilbert Huang transforms 
(HHT) [6], and variational mode decomposition (VMD) [7]. 
Although the above methods are very widely used, they also 

have certain drawbacks. For example, the window function of 
the STFT is fixed and is not suitable for the analysis of non-
stationary signals [8]. WT needs to manually select the basis 
function, and different basis functions will affect the diagnosis 
results [9]. HHT has difficulty in avoiding endpoint effects 
and modal aliasing during signal decomposition [10,11]. VMD 
requires the number of decomposition layers and the penalty 
factor to be set in advance [12]. The difference in parameters 
will affect the diagnosis results.

Marine diesel engines are rotating machines. Their feature 
information often concerns the multiples of the rotational 
frequency. McFadden [13] proposed the time-domain 
synchronous averaging (TSA) method, which is essentially 
a series of equidistantly distributed bandpass filters. The 
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method is effective in suppressing noise interference but has 
some drawbacks. As a result, it is not widely used in the field 
of fault diagnosis. Relevant scholars have also suggested ways 
to improve it. Yin et al. [14] proposed an adaptive multiple 
TSA method, which solves the period selection problem. Ha et 
al. [15] used an autocorrelation TSA method to achieve fault 
diagnosis in wind turbines. Niaki et al. [16] combined VMD 
with TSA and successfully applied it to the fault diagnosis 
of the helical gearbox, solving the problem of diagnosing 
low-intensity faults. In [17], a moving interpolation method 
was used to optimise the TSA, which improves feature 
extraction under noisy conditions. In [18], the angular domain 
window synchronous averaging method was proposed, which 
overcame the waveform distortion caused by speed variations.

In summary, relevant scholars have improved TSA from 
different perspectives and successfully applied it in practical 
engineering. However, there are still certain problems:
(1)	The TSA method tends to overlap specific frequency and 

frequency multiplication signal waveforms, making it 
difficult to decompose them effectively.

(2)	After the signal has been averaged in the time domain, it 
is only possible to obtain feature information at a specific 
frequency; it is not possible to extract feature information 
in the full frequency domain at once.

(3)	There is a need to acquire key phase signals. Although 
sensor technology is developing rapidly, the complex 
structure of marine diesel engines and the harsh operating 
environment makes it difficult to obtain key signals.
With advances in intelligence, deep learning methods 

have been extensively researched. The main methods are 
CNN, stacked auto-encoding networks, and deep belief 
networks [18-20]. In [21], a  combination of continuous 
wavelet transforms (CWT) and CNN was used to achieve 
fault diagnosis of hydraulic piston pumps. Xu et al. [22] 
used ensemble empirical mode decomposition (EEMD) to 
decompose the vibration signal and then input its intrinsic 
modal functions into the CNN to achieve fault diagnosis of 
the bearing. Zhang et al. [23] obtained 2-D images by wavelet 
packet transformation of the original signals and input them 
into ResNet to achieve fault diagnosis of the gearbox. In [24], 
the signal-to-image conversion method was used to convert 
the original signals into two-dimensional images, which 
were then fed into the CNN for fault diagnosis of rotating 
machinery. Yan et al. [25] achieved fault diagnosis of a ship 
inverter by 1-D CNN. Li et al. [26] transformed the original 
signal into a two-dimensional image by using a signal-to-
image conversion method and input it into a lightweight 
CNN, to realise the fault diagnosis of a marine centrifugal 
fan. Liu et al. [27] used the Gram angle field to transform the 
signal into a two-dimensional image and improve the residual 
network, to realise the fault diagnosis of rotor bearings. This 
shows that deep learning methods have made good progress 
in the field of fault diagnosis. Deep learning methods can 
overcome the inherent shortcomings of traditional intelligent 
fault diagnosis methods, such as the manual extraction of 
features and the difficulty of learning non-linear relationships.

Inspired by the above literature, a combination of a multi-
scale time-domain averaging decomposition (MTAD) 
method, signal-to-image conversion and CNN is proposed 
for the fault diagnosis in marine diesel engines. The main 
contributions are as follows:
(1)	The MTAD method can retain the feature information of the 

original signal more completely. The mutual interference of 
specific frequencies and frequency multiplication signals 
is overcome. There is no need to acquire key phase signals. 
The shortcomings of traditional TSA are overcome.

(2)	The signal components are converted into 2-D images 
using signal-to-image conversion. This builds a bridge 
between computer vision and fault diagnosis.

(3)	2-D images are input into the CNN model for feature 
extraction and fault diagnosis. Fault diagnosis accuracy 
can be improved.

BASIC THEORY

TIME DOMAIN SYNCHRONOUS AVERAGING (TSA)

Given a vibration signal y(t) containing a periodic signal 
and other signals, the mean value of y(t) is zero. Assuming that 
it satisfies the Dirichlet condition, y(t) can be expressed as:
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where 𝑡𝑡 ∈ [0,𝑇𝑇) and a(t) is the TSA result for y(t). 
TSA extracts the fundamental and octave characteristics of rotating machinery and effectively 

suppresses noise interference. It is worth noting that the TSA is less resistant to interference when N 
is small. When analysing low-frequency signals, a longer time series is desirable, to prevent the N 
value from being too small and making it difficult to achieve the desired result. 

The prerequisite for the above method is to obtain the key phase signals of the rotating machine. 
Depending on the characteristics of the comb filter, the relevant multiplier information can also be 
fused and difficult to decompose. In rotating machinery, signals from other periods may also contain 
fault information. TSA may also ignore other useful information when suppressing noise 
interference. yased on the above analysis, a multi-scale time-domain averaging decomposition 
method was proposed. 
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where g(t) is a periodic signal and e(t) are other signals. 

The period of the signal g(t) was T. The signal g(t) was divided into N segments of length T.. 
The nth segment sequence was defined as 𝑃𝑃𝑛𝑛(𝜑𝜑) . yy the definition of the periodic function, it 
follows that: 

𝑃𝑃𝑛𝑛(𝜑𝜑) = 𝑃𝑃𝑛𝑛+1(𝜑𝜑)                                                                                   (2)  
where 𝑛𝑛 ∈ [1,𝑁𝑁]; phase 𝜑𝜑 ∈ [0,𝑇𝑇).  

Partition y(t) into N time segments of equal length, with period T. 𝑌𝑌𝑛𝑛(𝜑𝜑)  is the nth time 
segment and 𝑌𝑌𝑛𝑛(𝜑𝜑) can be expressed as: 

𝑌𝑌𝑛𝑛(𝜑𝜑) = 𝑃𝑃𝑛𝑛(𝜑𝜑) + 𝑒𝑒𝑛𝑛(𝜑𝜑)                                                   (3)  
Since the mean value of y(t) is zero, ∑ 𝑒𝑒𝑛𝑛(𝜑𝜑)𝑁𝑁

𝑛𝑛=1 ≈ 0. 

∑𝑌𝑌𝑛𝑛(𝜑𝜑)
𝑁𝑁

𝜂𝜂=1
≈ ∑𝑃𝑃𝑛𝑛(𝜑𝜑)                                                   

𝑁𝑁

𝜂𝜂=1
(4)  

yased on the above characteristics of y(t), time-domain synchronous averaging can be 
expressed as the convolution of y(t) with the periodic signal g(t) [13]: 

𝑎𝑎(𝑡𝑡) = (𝑦𝑦 ∗ 𝑔𝑔)(𝑡𝑡) = 1
𝑁𝑁∑ 𝑦𝑦(𝑡𝑡 + 𝑛𝑛𝑛𝑛)

𝑁𝑁−1

𝑛𝑛=0
                                              (5)  

where 𝑡𝑡 ∈ [0,𝑇𝑇) and a(t) is the TSA result for y(t). 
TSA extracts the fundamental and octave characteristics of rotating machinery and effectively 

suppresses noise interference. It is worth noting that the TSA is less resistant to interference when N 
is small. When analysing low-frequency signals, a longer time series is desirable, to prevent the N 
value from being too small and making it difficult to achieve the desired result. 

The prerequisite for the above method is to obtain the key phase signals of the rotating machine. 
Depending on the characteristics of the comb filter, the relevant multiplier information can also be 
fused and difficult to decompose. In rotating machinery, signals from other periods may also contain 
fault information. TSA may also ignore other useful information when suppressing noise 
interference. yased on the above analysis, a multi-scale time-domain averaging decomposition 
method was proposed. 
 

This builds a bridge between computer vision and fault diagnosis. 
(3) 2-D images are input into the CNN model for feature extraction and fault diagnosis. Fault 

diagnosis accuracy can be improved. 
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This builds a bridge between computer vision and fault diagnosis. 
(3) 2-D images are input into the CNN model for feature extraction and fault diagnosis. Fault 

diagnosis accuracy can be improved. 
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The prerequisite for the above method is to obtain the 
key phase signals of the rotating machine. Depending on 
the characteristics of the comb filter, the relevant multiplier 
information can also be fused and difficult to decompose. 
In rotating machinery, signals from other periods may also 
contain fault information. TSA may also ignore other useful 
information when suppressing noise interference. Based on 
the above analysis, a multi-scale time-domain averaging 
decomposition method was proposed.

MULTI-SCALE TIME DOMAIN SYNCHRONOUS 
AVERAGING (MTAD)

The MTAD extracts the signal waveform at each frequency, 
aligns it with the original signal and decomposes it. This 
method can analyse the features of the signal at different 
frequencies and preserve the feature frequencies of the original 
signal more completely. In addition, it can suppress the 
coherence effects of frequency multiplication signals. It should 
be noted that the maximum frequency of the decomposition 
is determined by the type of fault. The maximum frequency 
should be greater than the frequency at which the fault is 
likely to exist. If the fault frequency cannot be determined, 
the highest frequency can generally be taken to be 0.5 times 
the sampling frequency. The calculation steps are as follows:
(1)	The signal duration is t. 
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determined, the highest frequency can generally be taken to be 0.5 times the sampling frequency. 
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(1) The signal duration is t. 𝑓𝑓𝑠𝑠 = 0.5𝐹𝐹𝑠𝑠 − 𝑖𝑖 × 𝑠𝑠,  Time domain synchronous averaging of 

signals with period 𝑇𝑇 = 1
𝑓𝑓𝑠𝑠

. 𝐹𝐹𝑠𝑠 is the sampling frequency. s is the step length. In general, 

𝑆𝑆 = 200
𝑡𝑡𝐹𝐹𝑠𝑠

. 𝑖𝑖 is the number of iterations, 𝑖𝑖 < 𝐹𝐹𝑠𝑠
2𝑠𝑠. 

(2) Dividing the original signal Y into K segments by period T can be expressed as: 

𝑌𝑌 = ⋃{𝑦𝑦𝑘𝑘}
𝑘𝑘

𝑘𝑘=1
= ⋃{𝑦𝑦𝑡𝑡}

𝑘𝑘

𝑘𝑘=1
, 𝑡𝑡 ∈ [(𝑘𝑘 − 1)𝑇𝑇, 𝑘𝑘𝑘𝑘)      (6)  

Y is a discrete signal that can be interpolated with three times the spline at the corresponding 

coordinates of y(t). X is the ⋃ {𝑦𝑦𝑘𝑘}𝑘𝑘
𝑘𝑘=1 -based reconstruction matrix: 

𝑿𝑿 =

[
 
 
 
 
𝑦𝑦1
.
.
.

𝑦𝑦𝐾𝐾]
 
 
 
 

=

[
 
 
 
 
𝑥𝑥11 … 𝑥𝑥1𝑛𝑛

.

.

.
𝑥𝑥𝑘𝑘1 ⋯𝑥𝑥𝑘𝑘𝑘𝑘]

 
 
 
 

                                       (7)  

where n is the length of each periodic sequence, 𝑛𝑛 = 𝑇𝑇
𝐹𝐹𝑠𝑠

.  

If we assume that the mean of each column in the matrix X is 𝑥̅𝑥𝑛𝑛, then the sequence of periods 
after averaging over the X time domain is 𝑥̅𝑥 = [𝑥̅𝑥1, 𝑥̅𝑥2 … 𝑥̅𝑥𝑛𝑛]. 𝑿̅𝑿 = [𝑥̅𝑥, 𝑥̅𝑥 … 𝑥̅𝑥]. 

(3) The discrete sequence 𝑌𝑌𝑓𝑓𝑓𝑓 can be obtained by a three times spline interpolation of 𝑿̅𝑿. The 

residual signal can be expressed as 𝑌𝑌𝑟𝑟 = 𝑌𝑌 − 𝑌𝑌𝑓𝑓𝑓𝑓. 
(4) Increase the number of iterations and repeat steps (1) to (4) until the number of iterations 

exceeds the agreed condition. 
(5) The time domain average decomposition result can be expressed as: 

𝑌𝑌 = 𝑌𝑌𝑟𝑟 + 𝛴𝛴𝑌𝑌𝑓𝑓𝑓𝑓                                                          (8)  
During the decomposition process, a three-times spline interpolation of the signal is performed 

for each decomposition. This is due to the phase errors that accumulate when TSA processes discrete 
signals and can have an impact on the results. The MTAD uses the amplitude-frequency response 
feature to separate signals of different frequencies, avoiding the problem of mixing specific 
frequency signals and frequency multiplication signals in TSA. Each component represents the 
signal feature of the corresponding frequency. The feature containing the frequency band can be 

, Time domain 
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decomposition. This is due to the phase errors that accumulate 
when TSA processes discrete signals and can have an impact 
on the results. The MTAD uses the amplitude-frequency 
response feature to separate signals of different frequencies, 
avoiding the problem of mixing specific frequency signals and 
frequency multiplication signals in TSA. Each component 
represents the signal feature of the corresponding frequency. 
The feature containing the frequency band can be obtained 
by reconstructing the components of different frequency 
bands. For example, the reconstructed signal for frequency 
band [fs1, fs2] is defined as:

obtained by reconstructing the components of different frequency bands. For example, the 
reconstructed signal for frequency band [𝑓𝑓𝑠𝑠1,𝑓𝑓𝑠𝑠2] is defined as: 
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𝑓𝑓𝑠𝑠2
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With MTAD, information can be extracted at different frequencies without a key phase signal, 
which is the basis for subsequent signal processing and fault diagnosis. 
 
SIGNAL-TO-IMAGE CONVERSION 
 

1-D signals can be converted into 2-D images by signal-to-image conversion [28]. The 
conversion process is shown in Fig. 1. If the obtained image size is M×M, the length of the 
intercepted signal is M2. The value of the signal is denoted by L(i), i=1, …, M and the pixel size is 
denoted by P (j, k), j=1, …, M, k=1, …, M. The formula can be expressed as: 

𝑃𝑃(𝑗𝑗,𝑘𝑘) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 {𝐿𝐿(
(𝑗𝑗 − 1) × 𝑀𝑀 + 𝑘𝑘) − Min(𝐿𝐿)

Max(𝐿𝐿) − Min(𝐿𝐿) × 255}          (10)  

where round(.) is the round function. Pixel values are normalised from 0 to 255. This method does 
not require any manual setting of the parameters and the features in the signal can be fully 
characterised. 
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Fig. 1. The signal-to-image conversion process

EXPERIMENTAL ANALYSIS 
AND DISCUSSION

EXPERIMENTAL EQUIPMENT

The experimental diesel engine model was a  MAN 
B&W 6S35ME-B. The rated power was 3250 kW and the 
rated speed was 142 r/min. The acceleration sensor model 
was INV9822, with a sampling frequency of 10.24 kHz. 
The data acquisition instrument was model INV3062 and 
the experimental platform is shown in Fig. 2. The marine 
diesel engine fault settings are given in Table 1. During the 
experiment, the diesel engine speed was 120 r/min and the 
power was 1800 kW.
Tab.1. Settings for different fault types

Fault 
label Fault type Fault setting Training 

sample
Testing 
sample

1 Normal - 500 300

2 No.1 cylinder misfire
Cut off No.1 

cylinder fuel oil 
inlet valve

400 300

3 Cylinder knocking 
(Deflagration)

Reduce fuel oil 
viscosity (Rapid fuel 

oil changeover)
500 300

4 Inadequate air supply Clogged air filter 400 300

Fig. 2. Experimental platform

FAULT DIAGNOSIS PROCESS

The fault diagnosis flow chart is shown in Fig. 3. The main 
steps were as follows:

Step 1: Vibration signals of different health states were 
collected.

Step 2: The vibration signals were decomposed by MTAD 
and the time-frequency energy matrices obtained.

Step 3: 2-D images obtained by signal-to-image conversion 
and pseudo-colour coding. Training data was input into CNN 
and a CNN model was built to determine initial learning 
parameters.

Step 4: The testing data was input into a trained CNN 
model for feature extraction and fault diagnosis.

Fig. 3. Fault diagnosis flow chart
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SIGNAL ANALYSIS

Normal condition and knocking cylinder failure are 
analysed as examples. The collected vibration signals were 
decomposed by MTAD at a step size of 0.5. The spectrum 
of the signal after MTAD decomposition is shown in Fig. 
4. The intrinsic frequency of the diesel engine was 1.89 
Hz and the signal cylinder firing frequency of the two-
stroke diesel engine was equal to the rotation frequency 
(2.00 Hz). Under normal operating conditions, diesel engine 
vibration is mainly dominated by intrinsic frequency. When 
a cylinder knocking fault occurs, there is a significant change 
in vibration amplitude at both the intrinsic frequency 
and the six-fold frequency. The diesel engine was a six-
cylinder diesel engine, so there was a significant change in 
amplitude at the six-fold frequency. The failure broke the 
dynamic balance of the engine. The amplitude also became 
prominent at the two and four-fold frequencies. The problem 
of waveform mixing between the intrinsic frequency and 
frequency multiplication signals was overcome by MTAD 
decomposition.

To link the computer vision and fault diagnosis, 1-D signals 
were transformed into 2-D images. In this way, invisible 
information from the original signal could be portrayed. 
The 1-D feature information was represented by textural 
features, such as colours and points of the 2-D image. Fig. 5 
shows the results of the signal-to-image conversion for the 
four health states. When the cylinder knocking fault occurs, 
the time-frequency energy surges and has a certain time 
interval. For example, the energy intensity is higher at 0.0685 
s, 0.2325 s, 0.3941 s, and 0.5592 s. The time interval is about 
0.164 s. A lower energy component exists between each of the 
two higher energies, i.e. the energy intensity changes every 
0.082 s. During this period, the frequency is approximately 
12.19 Hz, which is very close to the frequency of a cylinder 
knocking failure (12.27 Hz). 

Fig. 4. Spectrogram after MTAD decomposition

Fig. 5. Signal-to-image conversion results for four different health states

CNN MODEL

The CNN model required some hyperparameters to be 
set before it could be trained and tested. MaxEpoch and 
Learning rate were used as an example, to demonstrate the 
hyperparameter determination process. The optional values 
of MaxEpoch were set as 20, 30, 40, 50, and 80. The optional 
values of the learning rate was 0.0001, 0.001, and 0.01. The 
optional value of mini batch size was 50, 75, 100, and 125. 
The effect of different hyperparameters on the network 
performance is shown in Figs 6, 7 and 8, respectively. When 
MaxEpoch = 20, the network model was less time-consuming 
and had high diagnostic accuracy. Therefore, MaxEpoch was 
set the value of 20.  The network performance is optimal when 
the learning rate is 0.001. The network performs best when 
the mini batch size is 50. Other hyperparameters were set in 
a similar way and the finally determined hyperparameters 
are shown in Table 2. The CNN model used in this paper had 
17 layers, structured as shown in Fig. 9. The specific network 
model parameters are presented in Table 3.

Fig. 6. Experimental results for different values of MaxEpoch
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Fig. 7. Experimental results for different learning rates

Fig. 8. Experimental results for different mini batch sizes

Tab. 2. Results of initial learning parameter settings

LearnRate 0.001

LearnRateDropFactor 0.05

LearnRateDropPeriod 10

L2Regularisation 0.004

MaxEpoch 20

MiniBatchSize 50

Solver Adam

Fig. 9. The CNN model structure diagram

Tab. 3. The CNN structural parameters

Name Activations Learnables
imageinput 120×120×3 -

conv_1 120×120×16 Weights 6×6×3×16
Bias 1×1×16

batchnorm_1 120×120×16 Offset 1×1×16
Scale 1×1×16

relu_1 120×120×16 -
maxpool_1 60×60×16 -

conv_2 60×60×32 Weights 4×4×16×32
Bias 1×1×32

batchnorm_2 60×60×32 Offset 1×1×32
Scale 1×1×32

relu_2 60×60×32 -
maxpool_2 30×30×32 -

conv_3 30×30×64 Weights 4×4×16×64
Bias 1×1×64

batchnorm_3 30×30×64 Offset 1×1×64
Scale 1×1×64

relu_3 30×30×64 -
maxpool_3 15×15×64 -
dropout 15×15×64 -

fc 1×1×4 Weights 4×14
Bias 4×1

softmax 1×1×4 -
classoutput - -

FAULT DIAGNOSIS

The operating environment was Windows 11 and the 
software environment comprised Anaconda 3, Python 3.9.13 
and MATLAB 2021a. The deep learning framework was 
PyTorch 1.11.0. After pre-training the model with training 
data, the test data was input into the model for fault diagnosis. 
The network training process and testing process are shown 
in Fig. 10. The number of iterations in each round was 98, with 
a total of 20 iterations, and the maximum number of iterations 
was 1960. According to Fig. 10(a), as the number of iterations 
increased, the accuracy of the training data increased until 
it reached 100%. At the same time, the accuracy rate of the 
test data also increased and gradually approached 100%. 
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According to Fig. 10(b), the loss function values for both the 
training and test data gradually decreased until they levelled 
off. The final value of the loss function for the training data 
was 0.039. The final value of the loss function for the test data 
was 0.085. The training time was 251 s and the testing time 
was 36 s. The CNN model had a superior response speed and 
no over-fitting of the model occurred during the diagnosis.

Fig. 10. The CNN model training and testing process

In order to validate the CNN model’s capability for feature 
extraction, the clustering effect was visualised and analysed 
at different stages. The feature distribution of the network 
structure is analyzed by T-SNE visualization [29]. It can map 
high-dimensional data to 2-D space well and the visualisation 
results of different layers are shown in Fig. 11. Different 
feature information is mixed in the input layer. After two 
levels of convolution, the same feature information tends to 
be clustered and different feature information is distributed 
in different regions. In the softmax layer, the different feature 
information was completely separated. The network model 
was very effective in classifying four different health states.

Fig. 11. Results of feature visualisation for different layers

COMPARATIVE ANALYSIS OF DIFFERENT 
METHODS

The comparative analysis methods used in the experiments 
were EEMD-CNN [22], MVMD-CNN [12], CWT-CNN [21], 
and ResNet [23]. In MVMD-CNN, the number of VMD 
decomposition layers is determined adaptively, using the 
partial mean of the multi-scale permutation entropy. It 
can effectively overcome mode aliasing. In CWT-CNN, 
the original signals are transformed into 2-D images by 
continuous wavelet transform, which has good time-
frequency aggregation. In ResNet, the introduction of 
residual connectivity enables the extraction of deep feature 
information while preserving shallow feature information. 
Different diagnostic methods are analysed in the case of 
different signal-to-noise ratios (SNR). The diagnostic accuracy 
of the above methods, at different SNR(s), is shown in Fig. 12. 

Fig. 12 shows that, as the noise intensity increased 
(SNR decreased), the accuracy of the different methods 
decreased. When SNR = -5 dB, the proposed method achieved 
a diagnostic accuracy of 94.5%, which is 3.8~8.7% higher 
than with other methods. When SNR = 30 dB, the confusion 
matrix of the testing data is shown in Fig. 13. A total of 15 test 
samples are misclassified. The diagnostic accuracy for the four 
health states is 99.0%, 99.0%, 98.7% and 98.3%, respectively. 
The average diagnostic accuracy is 98.8%. In summary, the 
proposed method is effective in extracting feature information 
from the original signal and has a certain anti-noise capability. 

Fig. 12. Comparison of the diagnostic accuracy of different methods
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Fig. 13. Confusion matrix for testing data (SNR = 30 dB)

CONCLUSIONS

In this work, a fault diagnosis method for a marine diesel 
engine is proposed and validated, based on multi-scale time-
domain averaging decomposition, signal-to-image conversion 
and CNN. The conclusions are as follows:
(1)	MTAD can effectively separate frequency multiplication 

signals. There is no loss of feature information and there 
is no need to obtain key phase signals. The effectiveness of 
MTAD is verified by the experiments. MTAD overcomes 
the limitations of traditional methods. 

(2)	The signal-to-image conversion method can portray the 
invisible information of the raw signals. The textural 
features of the 2-D images can make the differences in 
signal features between working conditions more apparent.

(3)	The accuracy of the proposed method is stable: above 94.0% 
at different SNR(s). When SNR = -5 dB, the accuracy of the 
proposed method is 3.818.7% higher than other methods. 
It has a certain level of adaptive noise immunity.
Due to the limitations of the experimental conditions, 

only a few typical faults of diesel engines are preset in the 
experiments. In the next step, a more comprehensive study 
should be carried out for each subsystem of the diesel engine.
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