Warianty tytułu
Effect of lithium, strontium and barium carbonates on the belite phase formed at 1200°C
Języki publikacji
Abstrakty
Worcowy belit został przygotowany poprzez wypalenie kalcytu i kwarcu w stosunku molowym 2 przez 1,5 godziny w temperaturze 1200°C. Zidentyfikowano odmiany polimorficzne belitu utworzone przy dodatku Li2CO3 z 1% Li2O jako topnika i domieszki oraz SrCO3 i BaCO3 w ilościach równoważnych 8% SrO i 8% BaO jako mineralizatorów. Utworzone odmiany polimorficzne zbadano za pomocą dyfraktometrii rentgenowskiej z analizą Rietvelda oraz zbadano pod skaningowym mikroskopem elektronowym. Stwierdzono, że odmiany β i γ równie często powstają w belicie z domieszką strontu, a w obecności baru pojawia się również α’. Rozkład Li2CO3 do Li2O jest opóźniony przez węglany strontu i baru z powodu wzrostu ciśnienia parcjalnego CO2 i w konsekwencji stopiony materiał jest stabilizowany. Konieczne są dalsze badania w celu wyjaśnienia wpływu ciśnienia parcjalnego CO2 węglanów na polimorfizm krzemianu dwuwapniowego.
A reference belite is prepared from burning calcite and quartz at mole ratio = 2, for 1.5 hours at 1200°C. Belite polymorphs formed in the presence of Li2CO3 with 1% Li2O, as a fluxing and doping agent, in addition to SrCO3 and BaCO3 with amounts equivalent to 8% SrO and 8% BaO, as mineralizers, were identified. The thermal behavior of the belite mixes and of the pure carbonates was recorded for temperatures up to 1300°C. The polymorphs formed are defined by means of X-ray Rietveld analysis, and examined under a scanning electron microscope. It is found that the β and γ polymorphs are equally formed in the belite doped with strontium, and in the presence of barium, the α’ appears as well. The decomposition of Li2CO3 to Li2O is depressed by strontium and barium carbonates due to the increase in the partial pressure of CO2 and consequently the melt is stabilized. Further research is needed to explain the effect of CO2 partial pressure of the carbonates on the polymorphism of belite.
Czasopismo
Rocznik
Tom
Strony
428--437
Opis fizyczny
Bibliogr. 37 poz., il., tab.
Twórcy
autor
- Faculty of Science, Chemistry Department, Helwan University, Cairo, Egypt, Hanaa.ghorab@gmail.com
autor
- Faculty of Science, Chemistry Department, Helwan University, Cairo, Egypt
autor
- Heidelberg Materials, Egypt
autor
- Faculty of Science, Chemistry Department, Helwan University, Cairo, Egypt
Bibliografia
- 1. A. K. Chatterjee. High belite cements-Present status and future technological options: Part I. Cem. Concr. Res. 26(8), 1213-1225 (1996). https://doi.org/10.1016/0008-8846(96)00099-3.
- 2. A. Guerrero, S. Goñi, I. Campillo, A. Moragues, Belite cement clinker from coal fly ash of high Ca content. Optimization of synthesis parameters. Envir. Sci. Techn. 38(11), 3209-3213 (2004). https://doi.org/10.1021/es0351589.
- 3. C. Xin, C. Jun, L. Lingchao, L. Futian, T. Bing, Study of Ba-bearing calcium sulphoaluminate minerals and cement. Cem. Concr. Res. 30(1), 77-81 (2000). https://doi.org/10.1016/S0008-8846(99)00204-5.
- 4. F.P. Glasser, L. Zhang, High-performance cement matrices based on calcium sulfoaluminate-belite compositions. Cem. Concr. Res. 31(12), 1881-1886 (2001). https://doi.org/10.1016/S0008-8846(01)00649-4.
- 5. M. A. Bouzidi, A. Tahakourt, N. Bouzidi, D. Merabet, Synthesis and characterization of belite cement with high hydraulic reactivity and low environmental impact. Arab. J. Sci. Eng. 39, 8659-8668 (2014). https://doi.org/10.1007/s13369-014-1471-2.
- 6. A. Zezulová, T. Staněk, T. Opravil, The influence of barium compounds on the formation of portland cement clinker. Mater. Sci. Forum, 851, 116-121 (2016). https://doi.org/10.4028/www.scientific.net/MSF.851.116.
- 7. A. Gies, D. Knöfel, Influence of alkalies on the composition of belite-rich cement clinkers and the technological properties of the resulting cements. Cem. Concr. Res. 16(3), 411-422 (1986). https://doi.org/10.1016/0008-8846(86)90117-1.
- 8. M. Y. Benarchid, A. Diouri, A. Boukhari, J. Aride, J. Rogez, R. Castanet, Elaboration and thermal study of iron-phosphorus-substituted dicalcium silicate phase. Cem. Concr. Res. 34(10), 1873-1879 (2004). https://doi.org/10.1016/j.cemconres.2004.01.030.
- 9. J. Stark, A. Muller, R. Seydel, K. Jost, Conditions of the existence of hydraulically active belite cement. Proc. 8th ICCC Rio de Janeiro, Brazil, 2, 306-309 (1986).
- 10. Y. Zhao, L. Lu, S. Wang, C. Gong, L. Lu, Dicalcium silicates doped with strontia, sodium oxide and potassia. Adv. Cem. Res. 27(6), 311-320 (2015). https://doi.org/10.1680/adcr.14.00011.
- 11. C. Xin, Strontium-barium cement calcination composite mineralizer. CN101575180B. https://patents.google.com/patent/CN101575180B/en (2009).
- 12. S. Udagawa, K. Urabe, T. Iano, Stabilization mechanism and polymorphism of Ca2SiO4. Review of the 34th General Meeting. Cement Association of Japan, Tokyo, 37-39 (1980).
- 13. K. Suzuki, G. Yamaguchi, A Structural Study on a’-Ca2SiO4. Proc. 5th ISCC Tokyo, 1, 67-73 (1968).
- 14. V. V. Timashev, The Kinetics of Clinker Formation The Structure and Composition of Clinker and its Phases. Proc. 7th ICCC Paris, 1, 1-19 (1980).
- 15. K. Fukuda, I. Maki, S. Ito, Thermal Hysteresis for the α′ L β Transformations in Strontium Oxide Doped Dicalcium Silicates. J. Am. Cer. Soc. 79(11), 2969-2970 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08735.x.
- 16. K. Fukuda, I. Maki, S. Ito, S. Ikeda, Structure Change in Strontium Oxide Doped Dicalcium Silicates. J. Am. Cer. Soc. 79(10), 2577-2581 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb09018.x
- 17. C. M. Earnest, E. T. Miller, An assessment of barium and strontium carbonates as temperature and enthalpy standards. J. Therm. Anal. Calor. 130, 2277-2282 (2017). https://doi.org/10.1007/s10973-017-6539-2.
- 18. E.L. Charsley, C.M. Earnest, P.K. Gallagher, M.J. Richardson, Preliminary round-robin studies on the ICTAC certified reference materials for DTA: barium carbonate and strontium carbonate. J. Therm. Anal. Calor. 40(3), 1415-1422 (1993). https://doi.org/10.1007/bf02546905.
- 19. J. Zhang, C. Gong, S. Wang, L. Lu, X. Cheng, Effect of strontium oxide on the formation mechanism of dicalcium silicate with barium oxide and sulfur trioxide. Adv. Cem. Res. 27(7), 381-387 (2015). https://doi.org/10.1680/adcr.14.00021
- 20. https://digitalfire.com/oxide/li2o.
- 21. J. I. Bhatty, Role of minor elements in cement manufacture and use. Portland Cement Association, Research and Development Bulletin RD109T. Skokie, Illinois, USA (1995).
- 22. W. Sornlar, P. Choeycharoen, A. Wannagon, Characterization of alumina crucible made from aluminum industrial waste. J. Am. Cer. Soc. 56(2), 771-779 (2020). https://doi.org/10.1007/s41779-019-00395-7.
- 23. M. P. Javellana, I. Jawed, Extraction of free lime in portland cement and clinker by ethylene glycol. Cem. Concr. Res. 12(3), 399-403 (1982). https://doi.org/10.1016/0008-8846(82)90088-6.
- 24. L. Kriskova, Y. Pontikes, F. Zhang, Ö. Cizer, P.T. Jones, K. Van Balen, B. Blanpain, Influence of mechanical and chemical activation on the hydraulic properties of gamma dicalcium silicate. Cem. Concr. Res. 55, 59-68 (2014). https://doi.org/10.1016/j.cemconres.2013.10.004.
- 25. I. P. Saraswat, V. K. Mathur, S. C. Ahluwalia, Effect of alkaline earth metal dopants on the thermal decomposition of the CaCO3-SiO2 system. Part I. Thermochim. Acta 87, 37-45 (1985). https://doi.org/10.1016/0040-6031(85)85319-3.
- 26. P. Pasierb, R. Gajerski, S. Komornicki, M. Rękas, Structural properties and thermal behavior of Li2CO3-BaCO3 system by DTA, TG and XRD measurements. J. Therm. Anal. Calor. 65(2), 457-466 (2001). https://doi.org/10.1023/a:1017929103300.
- 27. P. Pasierb, R. Gajerski, M. Rokita, M. Rekas, Studies on the binary system Li2CO3-BaCO3. Phys. B 304(1-4), 463-476 (2001). https://doi.org/10.1016/S0921-4526(01)00502-6
- 28. L. Ahamad, S. K. Rakshit, S. C. Parida, Y. P. Naik, G. A. Rama Rao, S. G. Kulkarni, S.G. Singh, S. C. Gadkari, Solid-state synthesis and heat capacity measurements of ceramic compounds LiAlSiO4, LiAlSi2O6, LiAlSi3O8, and LiAlSi4O10. J. Therm. Anal. Calor. 112(1), 17-23 (2013). https://doi.org/10.1007/s10973-012-2691-x.
- 29. S. Licht, Stabilization of STEP electrolyses in lithium-free molten carbonates (2012). https://arxiv.org/abs/1209.3512
- 30. I. P. Saraswat, V. K. Mathur, S. C. Ahluwalia, Thermal studies of the CaCO3: SiO2 (2:1) system containing lithium as dopant. Thermochim. Acta 97, 313-320 (1986). https://doi.org/10.1016/0040-6031(86)87033-2.
- 31. K. Kolovos, S. Tsivilis, G. Kakali, The effect of foreign ions on the reactivity of the CaO-SiO2-Al2O3-Fe2O3 system: Part II: Cations. Cem. Concr. Res. 32(3), 463-469 (2002). https://doi.org/10.1016/S0008-8846(01)00705-0.
- 32. I. Arvanitidis, Du. Siche, S. Seetharaman, A study of the thermal decomposition of BaCO3. Metal. Mater. Trans. B 27, 409-416 (1996). https://doi.org/10.1007/BF02914905
- 33. M. G. Ktalkherman, V. A. Emelkin, B. A. Pozdnyakov, Production of lithium oxide by decompostion lithium carbonate in the flow of a heat carrier. Theor. Found. Chem. Eng. 43(1), 88-93 (2009). https://doi.org/10.1134/S0040579509010114.
- 34. L. Shi, T. Qu, D. Liu, Y. Deng, B. Yang, Y. Dai, Process of thermal decomposition of lithium carbonate. Mater. Proc. Fund. 107-116 (2020). https://doi.org/10.1007/978-3-030-36556-1_10.
- 35. I. Arvanitidis, Du. Sichen, S. Seetharaman, H. Y. Sohn, The intrinsic thermal decomposition kinetics of SrCO3 by a nonisothermal technique. Metal. Mater. Trans. B 28, 1063-1068 (1997). https://doi.org/10.1007/s11663-997-0060-0.
- 36. https://digitalfire.com/material/barium+carbonate
- 37. P. Ptáčekn, E. Bartoníčková, J. Švec, T. Opravil, F. Šoukal, F. Frajkorová, The kinetics and mechanism of thermal decomposition of SrCO3 polymorphs. Ceram. Int. 41(1), 115-126 (2015). https://doi.org/10.1016/j.ceramint.2014.08.043
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-40f23b94-06fb-43c1-8e1b-37c2b02055fa