Warianty tytułu
Wpływ właściwości wbudowanych materiałów na stateczność zapory w warunkach szybkiego obniżenia poziomu wody w zbiorniku
Języki publikacji
Abstrakty
A fast reduction of a reservoir level may result in instability of an earth dam caused by the high pore water pressures that remain relatively high in the embankment. Moreover, the dissipation of the accumulated pore water pressures is highly dependent on the permeability of the materials used for the embankment and the storage characteristics of the reservoir. Therefore, in the design of embankment dams, the stability analysis under rapid drawdown loading conditions is an important design case. In this study, the influence of different permeability rates on dam stability under different cases of rapid drawdown was investigated using the finite element method in SEEP/W and SLOPE/W of the GeoStudio with a case of the Lugoda dam in Ndembera catchment, Tanzania. The modeling process considers the time-dependent hydraulic conditions and the transient flow conditions using different water levels during rapid drawdown for evaluation of the factor of safety. From the 1 m per day drawdown rate; the lowest minimum factor of safety value (0.90) was obtained from the 10-7 m/s material permeability of the upstream zone of the dam. It means that, at a drawdown rate of 1m per day, there is a potential for failure of the embankment if the hydraulic conductivity value will be somewhere below 10-6 m/s.
Szybkie obniżenie poziomu zwierciadła wody w zbiorniku może wywołać utratę stateczność zapory ziemnej wynikająca z dużych wartości ciśnienia wody w porach pozostających w strefie odwodnej zapory. Rozpraszanie się ciśnienia wody w porach w zaporze ziemnej zależy od przepuszczalności materiałów użytych w nasypie oraz właściwości retencyjnych zbiornika. W projektowaniu zapór nasypowych analiza stateczności podczas szybkiego opróźniania zbiornika jest ważnym przypadkiem obliczeniowym. W niniejszym artykule przeanalizowano wpływ przepuszczalności materiałów na stateczność zapory przy różnych prędkościach szybkiego opróżniania zbiornika z wykorzystaniem metody elementów skończonych przy pomocy programów SEEP/W i SLOPE/W oprogramowania GeoStudio na przykładzie zapory Lugoda w Ndemberze zlewni w Tanzanii. W procesie modelowania uwzględniono warunki hydrauliczne zależne od czasu oraz przejściowe warunki przepływu przy różnych poziomach wody podczas szybkiego opróżniania zbiornika przy ocenie współczynnika stateczności. Przy szybkim opróźnianiu zbiornika wynoszacym 1 m na dobę zaobserwowano, że najmniejsza wartość współczynnika stateczności (0,90) uzyskano przy wartości przewodności hydraulicznej wynoszacej 10-7 m/s. Oznacza to, że przy prędkości obniżania poziomu wody w zbiorniku o 1 m na dobę, istnieje możliwość utraty stateczności nasypu, jeśli wartość przewodności hydraulicznej będzie mniejsza niż 10-6 m/s.
Czasopismo
Rocznik
Tom
Strony
539--553
Opis fizyczny
Bibliogr. 37 poz., il., tab.
Twórcy
autor
- Department of Civil Engineering, L.N. Gumilyov Eurasian National University, Nur-Sultan, Republic of Kazakhstan, utepov-elbek@mail.ru
autor
- Institute of Civil Engineering, Warsaw University of Life Sciences, Warsaw, Poland, zbigniew_lechowicz@sggw.edu.pl
autor
- Department of Civil Engineering, L.N. Gumilyov Eurasian National University, Nur-Sultan, Republic of Kazakhstan, askarkgs1955@gmail.com
autor
- Institute of Civil Engineering,Warsaw University of Life Sciences, Warsaw, Poland, zdzislaw_skutnik@sggw.edu.pl
autor
- CSI Research&Lab, LLP, Nur-Sultan, Kazakhstan, liya_1479@mail.ru
autor
- Department of Civil Engineering, L.N. Gumilyov Eurasian National University, Nur-Sultan, Republic of Kazakhstan, tmkilima@gmail.com
Bibliografia
- [1] S. Sica, L. Pagano, F. Rotili, “Rapid drawdown on earth dam stability after a strong earthquake”, Computers and Geotechnics, 2019, vol. 16, p. 103187, DOI: 10.1016/j.compgeo.2019.103187.
- [2] Z. Kahot, R. Dkiouak, A. Khamlichi, “Reliability analysis of slope stability in earthen dams following rapid drawdown”, Int. Rev. Appl. Sci. Eng., 2019, vol. 10, no. 1, pp. 101-112, DOI: 10.1556/1848.2018.0011.
- [3] M. Polemio, P. Lollino, “Failure of infrastructure embankments induced by flooding and seepage: a neglected source of hazard”, Nat. Hazards Earth Syst. Sci., 2011, vol. 11, pp. 3383-3396, DOI: 10.5194/nhess-11-3383-2011.
- [4] P. Talukdar, A. Dey, “Hydraulic failures of earthen dams and embankments”, Innov. Infrastruct. Solut., 2019, vol. 42, no. 4, DOI: 10.1007/s41062-019-0229-9.
- [5] I. Johnston, W. Murphy, J. Holden, “A review of floodwater impacts on the stability of transportation embankments”, Earth-Science Reviews, 2021, vol. 215, DOI: 10.1016/j.earscirev.2021.103553.
- [6] R. Jadid, B.M. Montoya, V. Bennett, et al., “Effect of repeated rise and fall of water level on seepage-induced deformation and related stability analysis of Princeville levee”, Engineering Geology, 2020, vol. 266, DOI: 10.1016/j.enggeo.2019.105458.
- [7] M.B. Hailu, “Modeling assessment of seepage and slope stability of dam under static and dynamic conditions of Grindeho Dam in Ethiopia”, Model. Earth Syst. Environ., 2020, DOI: 10.1007/s40808-020-01006-2.
- [8] D.R. Vandenberge, “Total stress rapid drawdown analysis of the Pilarcitos Dam failure using the finite element method”, Frontiers of Structural and Civil Engineering, 2014, vol. 8, pp. 115-123, DOI: 10.1007/s11709-014-0249-7.
- [9] K. Sobhan, “Challenges due to problematic soils: a case study at the crossroads of geotechnology and sustainable pavement solutions”, Innov. Infrastruct. Solut., 2017, vol. 40, no. 2, DOI: 10.1007/s41062-017-0070-y.
- [10] Z. Skutnik, M. Cmiel, “Selection of soil for transition layers in earth dams on th exmple of Swinna Poreba Dam”, Acta Scientiarum Polonorum Architectura, 2020, vol. 19, no. 3, pp. 55-66, DOI: 10.22630/aspa.2020.19.3.27.
- [11] F.G. Bell, I.A. Bruyn, “de Sensitive, expansive, dispersive and collapsive soils“, Bulletin of the International Association of Engineering Geology, 1997.
- [12] F. Salmasi, R. Norouzi, J. Abraham, et al., “Effect of Inclined Clay Core on Embankment Dam Seepage and Stability Through LEM and FEM”, Geotechnical and Geological Engineering, 2020, vol. 38, no. 6, pp. 6571-6586.
- [13] D. Quan Tran, S. Nishimura, M. Senge, et al., “Risk of Embankment Dam Failure from Viewpoint of Hydraulic Fracturing: Statistics, Mechanism, and Measures”, Reviews in Agricultural Science, 2020, vol. 8, pp. 216-229, Available: https://www.jstage.jst.go.jp/article/ras/8/0/8_216/_article.
- [14] X. Guo, J. Baroth, D. Dias, et al., “An analytical model for the monitoring of pore water pressure inside embankment dams”, Engineering Structures, 2018, vol. 160, pp. 356-365, DOI: 10.1016/j.engstruct. 2018.01.054.
- [15] S.S. Athani, C. Shivamanth, H. Solanki, et al., “Seepage and Stability Analyses of Earth Dam Using Finite Element Method”, Aquatic Procedia, 2015, vol. 4, DOI: 10.1016/j.aqpro.2015.02.110.
- [16] A. Ahmad, S. Ali, M. Khan, et al., “Re-Assessment of an Earth fill Dam using Finite Element Method and Limit Equilibrium Method (Case study of Latamber Dam, Pakistan)”, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2020, vol. 71, no. 2, pp. 87-102, DOI: 10.37934/arfmts.71.2.87102.
- [17] Morita, “Fluid flow through porous media”, Editor(s): Nobuo Morita, Developments in Petroleum Science, Elsevier, 2020, vol. 70, pp. 9-12, DOI: 10.1016/B978-0-12-823825-7.00016-8.
- [18] A. Mouyeaux, C. Carvajal, P. Bressolette, et al., “Probabilistic stability analysis of an earth dam by Stochastic Finite Element Method based on field data”, Computers and Geotechnics, 2018, vol. 101, pp. 34-47, DOI: 10.1016/j.compgeo.2018.04.017.
- [19] A. Fawaz, E. Farah, F. Hagechehade, “Slope Stability Analysis Using Numerical Modelling”, American Journal of Civil Engineering, 2014, vol. 2, no. 3, pp. 60-67, DOI: 10.11648/j.ajce.20140203.11.
- [20] N.M. Salem, “Analysis of Seepage through Earth Dams with Internal Core”, International Journal of Engineering Research, 2019, vol. 8.
- [21] H. Hasani, J. Mamizadeh, H. Karimi, “Stability of Slope and Seepage Analysis in Earth Fills Dams Using Numerical Models (Case Study: Ilam DAM-Iran)”, World Applied Sciences Journal, 2013, vol. 21, no. 9, pp. 1398-1402.
- [22] G. Barla, “Numerical modeling of deep-seated landslides interacting with man-made structures”, Journal of Rock Mechanics and Geotechnical Engineering, 2018, vol. 10, no. 6, pp. 1020-1036.
- [23] J.-E. Xiao, Ch.-Y. Ku, Ch.-Y. Liu, et al., “A Novel Boundary-Type Meshless Method for Modeling Geofluid Flow in Heterogeneous Geological Media”, Geofluids, 2018, vol. 2018, Article ID 9804291, pp. 1-13, DOI: 10.1155/2018/9804291.
- [24] J. Wang, D.B. Apel, Y. Pu, et al., “Numerical modeling for rockbursts: A state-of-the-art review”, Journal of Rock Mechanics and Geotechnical Engineering, 2021, vol. 13, issue 2.
- [25] J. Zhang, H.C. Chua, J. Zhou, et al., “Factors affecting the membrane performance in submerged membrane bioreactors”, Journal of Membrane Science, 2006, vol. 284, no. 1-2, pp. 54-66, ISSN 0376-7388, DOI: 10.1016/j.memsci.2006.06.022.
- [26] Beomhan Engineering & Architects in association with Hankuk Engineering Co., “Consultancy services for preparation of feasibility study, detailed design for lugoda dam and Maluluma hydropower on Ndembera river: Interim report. Geological investigations report”, 2014, 173 p.
- [27] Beomhan Engineering & Architects in association with Hankuk Engineering Co., “Consultancy services for preparation of feasibility study, detailed design for lugoda dam and Maluluma hydropower on Ndembera river: Interim report. Hydrological report”, 2014, 267 p.
- [28] I. Arshad, M.M. Babar, N. Javed, “Numerical Analysis of Drawdown in an Unconfined Aquifer due to Pumping Well by SIGMA/W and SEEP/W Simulations”, Advances in Science, Technology and Engineering Systems Journal, 2016, vol. 1, no. 1, pp. 11-18, DOI: 10.25046/aj010102.
- [29] R. Omar, I. Baharuddin, H. Taha, et al., “Slope Stability Analysis of Granitic Residual Soil Using SLOPE/W, Resistivity and Seismic”, International Journal of Engineering & Technology, 7 (4.35), pp. 172-176, DOI: 10.14419/ijet.v7i4.28.22355.
- [30] H. el-Ramly, N.R. Morgenstern, D.M. Cruden, “Probabilistic slope stability analysis for practice”, Canadian Geotechnical Journal, 2002, vol. 39, no. 3, pp. 665-683, DOI: 10.1139/t02-034.
- [31] L. Lam, D.G. Fredlund, “A general limit equilibrium model for three-dimensional slope stability analysis”, Can. Geotech. J., 1993, vol. 30, no. 6, pp. 905-919.
- [32] E. Spencer, “A method of analysis of the stability of embankments assuming parallel inter-slice forces”, Geotechnique, 1967, vol. 17, no. 1, pp. 11-26, DOI: 10.1680/geot.1967.17.1.11.
- [33] M.W. Agam, M.H.M. Hashim, M.I. Murad, et al., “Slope Sensitivity Analysis Using Spencer’s Method in Comparison with General Limit Equilibrium Method”, Procedia Chemistry, 2016, vol. 619, pp. 651-658, DOI: 10.1016/j.proche.2016.03.066.
- [34] S. Atashband, “Evaluate Reliability of Morgenstern-Price Method in Vertical Excavations”, In: S. Kadry, A. El Hami (Eds.), Numerical Methods for Reliability and Safety Assessment. Springer, Cham. 2015, DOI: 10.1007/978-3-319-07167-1_20
- [35] N.R. Morgenstern and V.E. Price, “The Analysis of the Stability of General Slip Surfaces”, Géotechnique, 1965, vol. 15, no. 1, pp. 79-93, DOI: 10.1680/geot.1965.15.1.79.
- [36] D.W. Fleck, “WSDOT Geotechnical Design Manual M 46-03.08. Chapter 7: Slope Stability Analysis”, no. October, 2013, pp. 522-624.
- [37] A. Stokes, C. Atger, A.G. Bengough, et al., “Desirable plant root traits for protecting natural and engineered slopes against landslides”, Plant and Soil, 2009, vol. 324, no. 1, pp. 1-30, DOI: 10.1007/s11104-009-0159-y.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-40ce08fb-37b9-46cb-a31f-138c83a777a8