Warianty tytułu
The review of the use of fiber optic sensors in monitoring key elements of critical infrastructure
Języki publikacji
Abstrakty
Niniejszy artykuł przedstawia przegląd możliwości wykorzystania czujników światłowodowych w nieprzerwanym monitorowaniu wybranych elementów infrastruktury krytycznej. Zaprezentowano główne rodzaje czujników światłowodowych, zarówno punktowych, jak i rozłożonych, wykorzystywanych w tego typu rozwiązaniach. Na podstawie dostępnej literatury dokonano przeglądu zastosowania czujników światłowodowych w wybranych elementach infrastruktury krytycznej, takich jak obiekty infrastruktury transportowej oraz systemy przesyłowe wody i surowców energetycznych. W pracy zamieszczono również odwołania do badań własnych autorów.
This article presents a review of the potential uses of fiber optic sensors in the continuous monitoring of selected elements of critical infrastructure. It discusses the main types of fiber optic sensors, both point and distributed, used in such solutions. Based on the available literature, the article reviews the application of fiber optic sensors in selected elements of critical infrastructure, such as transportation infrastructure and water and energy resource transmission systems. The work also includes references to the authors’ own research.
Rocznik
Tom
Strony
11--17
Opis fizyczny
Bibliogr. 62 poz.
Twórcy
autor
- Katedra Telekomunikacji i Teleinformatyki, Politechnika Wrocławska, mateusz.madry@pwr.edu.pl
autor
- Katedra Telekomunikacji i Teleinformatyki, Politechnika Wrocławska, boguslaw.szczupak@pwr.edu.pl
Bibliografia
- [1] Rządowe Centrum Bezpieczeństwa, Systemy infrastruktury krytycznej, strona internetowa: https://www.gov.pl/web/rcb/systemy-infrastruktury-krytycznej [dostęp online: 15.05.2024].
- [2] Bado M. F., Casas J. R., A review of recent distributed optical fiber sensors applications for civil engineering structural health monitoring, Sensors, 21 (2021), No. 5, 1818.
- [3] Lu P. et al., Distributed optical fiber sensing: Review and perspective, Applied Physics Reviews, 6 (2019), No. 4, 041302.
- [4] Fang Z. et al., Fundamentals of optical fiber sensors, John Wiley & Sons, 2012.
- [5] Krohn D. A. et al., Fiber Optic Sensors: Fundamentals and Ap plications, 4th ed.; Society of Photo-Optical.
- [6] Prisutova J. et al., Use of Fibre-Optic Sensors for Pipe Condition and Hydraulics Measurements: A Review, CivilEng, 3 (2022), 85-113.
- [7] Hill K. O. et al., Photosensitivity in Optical Fiber Waveguides: Application to Reflection Filter Fabrication, Appl. Phys. Lett., 32 (1978), 647-649.
- [8] Othonos A. et al., Fibre Bragg Gratings. In: Venghaus H. (eds) Springer Series in Optical Sciences, tom 123. Springer, Berlin, Heidelberg, 2006.
- [9] Li C. et al., FBG arrays for quasi-distributed sensing: A review, Photonic Sensors, 11 (2021), 91-108.
- [10] Mądry M. et al., Power modulated temperature sensor with inscribed fibre Bragg gratings, Opto-Electronics Review, 24 (2016), No. 4, 183-190.
- [11] Kokhanovskiy A. et al., Highly dense FBG temperature sensor assisted with deep learning algorithms, Sensors, 21 (2021), No. 18, 6188.
- [12] Tian K. et al., Temperature-independent fiber Bragg grating strain sensor using bimetal cantilever, Optical Fiber Technology, 11 (2005), No. 4, 370-377.
- [13] Mądry M. et al., The compact FBG-based humidity sensor setup. In 2017 19th International Conference on Transparent Optical Networks (ICTON), 2017, 1-4.
- [14] Zhang J. et al., An optical fiber sensor based on polyimide coated fiber Bragg grating for measurement of relative humidity, Optical Fiber Technology, 61 (2021), 102406.
- [15] Huang J. et al., A diaphragm-type fiber Bragg grating pressure sensor with temperature compensation, Measurement, 46 (2013), No. 3, 1041-1046.
- [16] Pachava V. R. et al., FBG based high sensitive pressure sensor and its low-cost interrogation system with enhanced resolution, Photonic Sensors, 5 (2015), 321-329.
- [17] Barnoski M. K., Jensen S. M., Fiber Waveguides: A Novel Technique for Investigating Attenuation Characteristics, Appl. Opt., 15 (1976), 2112-2115.
- [18] Luna Innovations Inc., Data sheet of Luna OBR 4600, https://lunainc.com/product/obr-4600 [dostęp online: 15.05.2024].
- [19] Szczupak B. et al., The influence of germanium concentration in the fiber core on temperature sensitivity in Rayleigh scattering based OFDR, IEEE Sensors Journal, 21 (2021), No. 18, 20036-20044.
- [20] Oz Optics Ltd., Data sheet of Fiber Optic Distributed Strain and Temperature Sensors (DSTS) BOTDA Module and Fiber Optic Distributed Strain and Temperature Sensors (DSTS) BOTDR Module, https://www.ozoptics.com/products/fiber_optic_distributed.html
- [21] Glišić B. et al., Integrity monitoring of an old steel bridge using fiber optic distributed sensors based on Brillouin scattering, Nondestructive characterization for composite materials, aerospace engineering, civil infrastructure, and homeland security, 6531 (2007).
- [22] Glisic B., Inaudi D., Development of method for in-service crack detection based on distributed fiber optic sensors, Struct. Heal. Monit., 11 (2012), No. 2, 161-171.
- [23] Matta F. et al., Distributed strain measurement in steel bridge with fiber optic sensors: Validation through diagnostic load test, J. Perform. Constr. Facil., 22 (2008), 264-273.
- [24] Glisic B., Chen J., Hubbell D., Streicker Bridge: A comparison between Bragg-grating long-gauge strain and temperature sensors and Brillouin scattering-based distributed strain and temperature sensors, In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, USA, 2011.
- [25] Barrias A. et al., Application of distributed optical fiber sensors for the health monitoring of two real structures in Barcelona, Structure and Infrastructure Engineering, 14 (2018), No. 7, 967- 985.
- [26] Barrias A., Casas J. R., Villalba S., Rodriguez G., Health Monitoring of real structures by distributed optical fiber, In Proceedings of the Fifth International Symposium on Life-Cycle Civil Engineering, IALCCE’16, Delft, Netherlands, 2016.
- [27] Regier R., Neil A. H., Distributed strain behavior of a reinforced concrete bridge: Case study, Journal of Bridge Engineering, 19 (2014), No. 12, 05014007.
- [28] Xiao F., Chen G. S., Hulsey J. L., Monitoring bridge dynamic responses using fiber Bragg grating tiltmeters, Sensors, 17 (2017), 2390.
- [29] Chan T. H. et al., Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation, Engineering Structures, 28 (2006), No. 5, 648-659.
- [30] Ye X. W., Su Y. H., Xi P. S., Statistical analysis of stress signals from bridge monitoring by FBG system, Sensors, 18 (2018), No. 2, 491.
- [31] Siwowski T. et al., Distributed fibre optic sensors in FRP composite bridge monitoring: Validation through proof load tests, Engineering Structures, 246 (2021), 113057.
- [32] Shi B. et al., A feasibility study on the application of fiber-optic distributed sensors for strain measurement in the Taiwan Strait Tunnel project, Mar. Georesour. Geotechnol., 21 (2003), 333-343.
- [33] Rajeev P. et al., Distributed optical fibre sensors and their applications in pipeline monitoring, Key Eng. Mater., 558 (2013), 424-434.
- [34] Gue C.Y. et al., The monitoring of an existing cast iron tunnel with distributed fibre optic sensing (DFOS), J. Civ. Struct. Health Monit., 5 (2015), 573-586.
- [35] Minardo A. et al., Distributed Fiber Optic Sensors for the Monitoring of a Tunnel Crossing a Landslide, Remote Sens., 10 (2018), 1291.
- [36] Inaudi D., Walder R., Full-Length Tunnel Structural Monitoring, In Proceedings of the Structural Health Monitoring, Stanford, CA, USA, 10-12 September 2019.
- [37] Li Z. et al., A study on the application of the distributed optical fiber sensing monitoring technology in the process of dismantling temporary tunnel shoring, Arab. J. Geosci., 13 (2020), 1-11.
- [38] Fajkus M. et al., Analysis of the highway tunnels monitoring using an optical fiber implemented into primary lining, J. Electr. Eng., 68 (2017), 364-370.
- [39] Monsberger C.M., Lienhart W., Kluckner A., Continuous strain measurements in a shotcrete tunnel lining using distributed fibre optic sensing, In Proceedings of the 9th European Workshop on Structural Health Monitoring, Manchester, UK, 10-13 July 2018, 1-13.
- [40] Gómez J. et al., Structural Health Monitoring with Distributed Optical Fiber Sensors of tunnel lining affected by nearby construction activity, Autom. Constr., 117 (2020), 103261.
- [41] Wang P. et al., Longitudinal force measurement in continuous welded rail with bi-directional FBG strain sensors, Smart Materials and Structures, 25 (2015), No. 1, 015019.
- [42] Zeni L. et al., Monitoring railways with optical fibers, SPIE Newsroom, 2013.
- [43] Sun F. et al., Distributed monitoring of rail lateral buckling under axial loading, J. Civ. Struct. Health Monit., 2021.
- [44] Wheeler L.N. et al., Measurement of distributed dynamic rail strains using a Rayleigh backscatter based fiber optic sensor: Lab and field evaluation, Transp. Geotech., 14 (2018), 70-80.
- [45] Glisic B., Yao Y., Fiber optic method for health assessment of pipelines subjected to earthquake-induced ground movement, Struct. Health Monit., 11 (2012), 696-711.
- [46] Inaudi D., Glisic B., Long-Range Pipeline Monitoring by Dis tributed Fiber Optic Sensing, J. Press. Vessel. Technol., 132 (2010), 011701.
- [47] Inaudi D., Glisic B., Development of Distributed Strain and Temperature Sensing Cables, In Proceedings of the 17th International Conference on Optical Fibre Sensors, Bruges, Belgium, 23-27 May 2005, Volume 5855.
- [48] Lim K. et al., Distributed fiber optic sensors for monitoring pressure and stiffness changes in out-of-round pipes, Struct. Control Health Monit., 23 (2015), 303-314.
- [49] Ravet F. et al., Submillimeter Crack Detection with Brillouin Based Fiber-Optic Sensors, IEEE Sens. J., 9 (2009), 1391-1396.
- [50] Simpson B. et al., Distributed Sensing of Circumferential Strain Using Fiber Optics during Full-Scale Buried Pipe Experiments, J. Pipeline Syst. Eng. Pract., 6 (2015), 04015002.
- [51] Stajanca P. et al., Detection of Leak-Induced Pipeline Vibrations Using Fiber-Optic Distributed Acoustic Sensing, Sensors, 18 (2018), 2841.
- [52] Ren L. et al., Design and Experimental Study on FBG Hoop-Strain Sensor in Pipeline Monitoring, Opt. Fiber Technol., 20 (2014), 15-23.
- [53] Hou Q. et al., Experimental Study of Leakage Detection of Natural Gas Pipeline Using FBG Based Strain Sensor and Least Square Support Vector Machine, J. Loss Prev. Process. Ind., 32 (2014), 144-151.
- [54] Jia Z. et al., Pipeline Leak Localization Based on FBG Hoop Strain Sensors Combined with BP Neural Network, Appl. Sci., 8 (2018), 146.
- [55] Alwis L. S. M. et al., Evaluation of the Durability and Performance of FBG-Based Sensors for Monitoring Moisture in an Aggressive Gaseous Waste Sewer Environment, Journal of Lightwave Technology, 35 (2017), No. 16, 3380-3386.
- [56] Ding Z. et al., Distributed strain and temperature discrimination using two types of fiber in OFDR, IEEE Photonics Journal, 8 (2016), No. 5, 1-8.
- [57] Kwon Y. S. et al., Enhanced sensitivity of distributed-temperature sensor with Al-coated fiber based on OFDR, Optical Fiber Technology, 48 (2019), 229-234
- [58] Xu Z. et al., Temperature insensitive distributed wide-dynamic range strain sensing based on polarization-maintaining photonic crystal fiber, Journal of Physics D: Applied Physics, 57 (2024), 305103.
- [59] Mądry, Mateusz, Lourdes Alwis, and Elżbieta Bereś-Pawlik. “Intensity-modulated PM-PCF Sagnac loop in a DWDM setup for strain measurement.” Applied Sciences 9.11 (2019): 2374.
- [60] Zhu C., Alsalman O., Vernier effect-based optical fiber sensor for dynamic sensing using a coarsely resolved spectrometer, Optics Express, 31 (2023), No. 13, 22250-22259.
- [61] Zhu C. et al., Machine learning for a Vernier-effect-based optical fiber sensor, Optics Letters, 48 (2023), No. 9, 2488-2491.
- [62] Dey K. et al., Machine learning approach for simultaneous measurement of strain and temperature using FBG sensor, Sensors and Actuators A: Physical, 333 (2022), 113254.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-40a7fae0-9f75-4a1e-9a65-e84f1bd4c88e