Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2022 | No. 64 (1) | 35--49
Tytuł artykułu

A comparative study of biosynthesized marine natural-product nanoparticles as antifouling biocides

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, biosynthesized nanoparticles using chitosan, Ulva fasciata, and Avicennia marina leaves extracts (A, B, and C, respectively), were evaluated as paint additives to control marine fouling on different substrates. These biocidal nanoparticle compounds were prepared using a green biosynthesis method. Their characterizations were conducted using Fourier-Transform Infrared spectroscopy and Transmission electron microscopy. Each nanoparticle compound was mixed with a prepared paint, resulting in three formulations for each (e.g. 1C, 2C, 3C), containing 20%, 40%, and 60% by weight. Painted PVC, wood, and steel with these nine paints, and the control were immersed in seawater for different periods. After two months of immersion, the least number of fouling species, (one species) was recorded on both the wood and steel panels that were coated with paint (1C). Meanwhile, after four months, the least numbers of fouling (four and six species) were recorded on wood and steel panels that were coated with paint (3C). After around seven months of immersion, the least numbers of fouling species (five and ten) were recorded on wood and steel panels that were coated with paints (1C and 3C), respectively. The steel panel coated with (3C), harbored ∼2% of the total number of barnacles found on the control, after 7 months of immersion. The superior antifouling agent efficiency of extract (C) nanoparticles can be attributed to its constituents of polyphenols, ammonium compounds, and high concentrations of alcohols, besides the presence of both aromatic and aliphatic amide and amide derivatives.
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Strony
35--49
Opis fizyczny
Bibliogr. 54 poz., fot., tab., wykr.
Twórcy
  • Taxonomy & Biodiversity of Aquatic Biota Lab, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt, kh.abdelsalam@gmail.com
  • Marine Chemistry Lab, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt, nshaltout@gmail.com
  • Microbiology Lab, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt, drhassan1973@yahoo.com
  • Marine Chemistry Lab, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt, herminetadros@gmail.com
  • Marine Chemistry Lab, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt, m_niof@yahoo.com
  • Microbiology Lab, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt, ehab.beltagy@gmail.com
Bibliografia
  • 1. Abdel-Latif, H.H., Shams El-Din, N.G., Ibrahim, H.A.H., 2018. An-timicrobial activity of the newly recorded red alga Gratelou-pia doryphora collected from the Eastern Harbor, Alexandria, Egypt. J. Appl. Microbiol. 125, 1321-1332. https://doi.org/10.1111/jam.1405
  • 2. Abdel Aleem, A., 1993. The Marine Algae of Alexandria, Egypt, 138 pp.
  • 3. Abeysinghe, P.D., 2010. Antibacterial activity of some medicinal mangroves against antibiotic resistant pathogenic bacteria. Indian J. Pharm. Sci. 72, 167-172. https://doi.org/10.4103/0250-474X.65019
  • 4. Abou-Elela, G.M., 1994. Studies on the settlement of marine bacteria and its response to some coatings on artificial substrata in Alexandria Eastern Harbour. M.Sc. thesis, Faculty of Science, Alexandria University, 156 pp.
  • 5. Abou-Elela, G.M., El-Sersy, N.A., El-Shenawy, M.A., Abd-Elnabi, H.,Ibrahim, H.A.H., 2009. Bio-Control of Vibrio fluvialis in Aquaculture by Mangrove (Avicennia marina) Seeds Extracts. Res. J.Microbiol. 4, 38-48. https://doi.org/10.3923/jm.2009.38.48
  • 6. Ali, S.W., Rajendran, S., Joshi, M., 2011. Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydr. Polym. 83, 438-446. https://doi.org/10.1016/j.carbpol.2010.08.004
  • 7. Alishahi, A., Aïder, M., 2012. Applications of Chitosan in the Seafood Industry and Aquaculture: A Review. Food Bioprocess Technol. 5, 817-830. https://doi.org/10.1007/s11947-011-0664- x
  • 8. Almeida, E., Diamantino, T.C., de Sousa, O., 2007. Marine paints: The particular case of antifouling paints. Prog. Org. Coatings 59, 2-20. https://doi.org/10.1016/j.porgcoat.2007.01.017
  • 9. Alves, M.J., Ferreira, I.C.F.R., Froufe, H.J.C., Abreu, R.M.V, Martins, A., Pintado, M., 2013. Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. J. Appl. Microbiol. 115, 346-357. https://doi.org/10.1111/jam.12196
  • 10. Azuma, H., Toyota, M., Asakawa, Y., Takaso, T., Tobe, H., 2002. Floral scent chemistry of mangrove plants. J. Plant Res. 115, 47-53. https://doi.org/10.1007/s102650200007
  • 11. Bather, J.M., Riley, J.P., 1954. The chemistry of the irish sea. Part I. The sulphate-chlorinity ratio. ICES J. Mar. Sci. 20, 145-152. https://doi.org/10.1093/icesjms/20.2.145
  • 12. Bellan-Santini, D., Diviacco, G., Krapp-Schickel, G., Ruffo, S.,1989. The Amphipoda of the Mediterranean. Part 2. Gammaridea (Haustoriidae to Lysianassidae). Mémoires de l’ Institut Océanographique, Monaco, 365-576.
  • 13. Bhadury, P., Wright, P.C., 2004. Exploitation of marine algae: Biogenic compounds for potential antifouling applications. Planta 219, 561-578. https://doi.org/10.1007/s00425- 004- 1307- 5
  • 14. Botros Tadros, A., Abdalla Ibrahim, H., Ramzy Zaki, H., Mahmoud El-Naggar, M., Eid Abbas, A., 2009. Suppressive effect of coated surfaces contain Ulva lactuca free lipid on Staphylococcus aureus ATCC 6538. Egypt. J. Aquat. Res. 35, 405-412.
  • 15. Brown, K.M., Swearingen, D.C., 1998. Effects of seasonality, length of immersion, locality and predation on an intertidal fouling assemblage in the Northern Gulf of Mexico. J. Exp. Mar. Bio. Ecol. 225, 107-121. https://doi.org/10.1016/S0022-0981(97)00217-7
  • 16. Campbell, A.C., Gorringe, R., Nicholls, J., 1982. The Hamlyn Guide to the Flora and Fauna of the Mediterranean Sea. Hamlyn, London, New York, Sydney, Toronto, 321 pp.
  • 17. Cetin-Karaca, H., 2011. Evaluation of Natural Antimicrobial Phenolic Compounds against Food borne Pathogens. Faculty of Agriculture, University of Kentucky M.Sc. Thesis, 652 pp.
  • 18. Chambers, L.D., Stokes, K.R., Walsh, F.C., Wood, R.J.K., 2006. Modern approaches to marine antifouling coatings. Surf. Coatings Technol. 201, 3642-3652. https://doi.org/10.1016/j.surfcoat.2006.08.129
  • 19. Chen, J.J., Fei, D.Q., Chen, S.G., Gao, K., 2008. Antimicrobial triterpenoids from Vladimiria muliensis. J. Nat. Prod. 71, 547-550. https://doi.org/10.1021/np070483l
  • 20. De Marco, B.A., Rechelo, B.S., Tótoli, E.G., Kogawa, A.C., Salgado, H.R.N., 2019. Evolution of green chemistry and its multidimensional impacts: A review. Saudi Pharm. J. 27, 1-8. https://doi.org/10.1016/j.jsps.2018.07.011
  • 21. Dobretsov, S., Rittschof, D., 2020. Love at first taste: induction of larval settlement by marine microbes. IJMS 21, 731. https://doi.org/10.3390/ijms21030731
  • 22. Farhadi, F., Khameneh, B., Iranshahi, M., Iranshahy, M., 2019. Antibacterial activity of flavonoids and their structure—activity relationship: An update review. Phyther. Res. 33, 3-40. https://doi.org/10.1002/ptr.6208
  • 23. Hadfield, M.G., 2011. Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. Ann. Rev. Mar. Sci. 3, 453-470. https://doi.org/10.1146/annurev- marine- 120709- 142753
  • 24. Hurst, G.A., 2020. Systems thinking approaches for international green chemistry education. Curr. Opin. Green Sustain. Chem. 21, 93-97. https://doi.org/10.1016/j.cogsc.2020.02.004
  • 25. Kabara, J.J., Conley, A.J., Truant, J.P., 1972. Relationship of chemical structure and antimicrobial activity of alkyl amides and amines. Antimicrob. Agents Chemother. 2, 492-498. https://doi.org/10.1128/AAC.2.6.492
  • 26. Kolanjinathan, K., Ganesh, P., Saranraj, P., 2014. Pharmacological Importance of Seaweeds: A Review. World J. Fish Mar. Sci. 6, 1-15. https://doi.org/10.5829/idosi.wjfms.2014.06.01.76195
  • 27. Kong, M., Chen, X.G., Xing, K., Park, H.J., 2010. Antimicrobial properties of chitosan and mode of action: A state of the art. review. Int. J. Food Microbiol. 144, 51-63. https://doi.org/10.1016/j.ijfoodmicro.2010.09.012
  • 28. Krishnan, M., Sivanandham, V., Hans-Uwe, D., Murugaiah, S.G.,Seeni, P., Gopalan, S., Rathinam, A.J., 2015. Antifouling assessments on biogenic nanoparticles: A field study from polluted offshore platform. Mar. Pollut. Bull. 101, 816-825. https://doi.org/10.1016/j.marpolbul.2015.08.033
  • 29. Lamsal, K., Kim, S.W., Jung, J.H., Kim, Y.S., Kim, K.S., Lee, Y.S., 2011. Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39, 194-199. https://doi.org/10.5941/MYCO.2011.39.3.194
  • 30. Mahdavi, M., Namvar, F., Ahmad, M.Bin, Mohamad, R., 2013. Green biosynthesis and characterization of magnetic iron oxide (Fe3 O4 ) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18, 5954-5964. https://doi.org/10.3390/molecules18055954
  • 31. 1Mohy El-Din, S.M., El-Ahwany, A.M.D., 2015. Bioactivity and phytochemical constituents of marine red seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea). J. Taibah Univ. Sci. 10, 471-484. https://doi.org/10.1016/j.jtusci.2015.06.004
  • 32. Negm, M.A., Ibrahim, H.A.H., Shaltout, N.A., Shawky, H.A., Abdel—mottaleb, M.S., Hamdona, S.K., 2018. Green Synthesis of Silver nanoparticles Using Marine Algae Extract and Their Antibacterial Activity. Middle East J. Appl. Sci. 8, 957-970.
  • 33. Parsons, T.R., Maita, Y., Lalli, C.M., 1984. A Manual of Chemical & Biological Methods for Seawater Analysis. Pergamon Press, Oxford and New York, 173 pp. https://doi.org/10.1016/c2009- 0- 07774- 5
  • 34. Patil, M.P., Kim, G.-D., 2017. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl. Microbiol. Biotechnol. 101, 79-92. https://doi.org/10.1007/s00253- 016- 8012- 8
  • 35. Patil, M.P., Kim, G—D, 2018. Marine microorganisms for synthesis of metallic nanoparticles and their biomedical applications. Colloids and Surfaces B: Biointerfaces 172, 487-495. https://doi.org/10.1016/j.colsurfb.2018.09.007
  • 36. Pelletier, É., Bonnet, C., Lemarchand, K., 2009. Biofouling growth in cold estuarine waters and evaluation of some chitosan and copper anti-fouling paints. Int. J. Mol. Sci. 10, 3209-3223. https://doi.org/10.3390/ijms10073209
  • 37. Peng, L-H., Liang, X., Chang, R-H., Mu, J-Y., Chen, H-E.,Yoshida, A., Osatomi, K., Yang, J-L., 2020. A bacterial polysac-charide biosynthesis-related gene inversely regulates larval settlement and metamorphosis of Mytilus coruscus. Biofouling 36 (7), 753-765 https://doi:1080/08927014.2020.1807520
  • 38. Puvvada, Y.S., Vankayalapati, S., Sukhavasi, S., 2012. Extraction of chitin from chitosan from exoskeleton of shrimp for application in the pharmaceutical industry. Int. Curr. Pharm. J. 1, 258-263. https://doi.org/10.3329/icpj.v1i9.11616
  • 39. Qi, L., Xu, Z., Jiang, X., Hu, C., Zou, X., 2004. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr. Res. 339, 2693-2700. https://doi.org/10.1016/j.carres.2004.09.007
  • 40. Qian, P.Y., Thiyagarajan, V., Lau, S.C.K., Cheung, S.C.K., 2003. Relationship between bacterial community profile in biofilm and attachment of the acorn barnacle Balanus amphitrite. Aquat. Microb. Ecol. 33, 225-237. https://doi.org/10.3354/ame033225
  • 41. Ramkumar, V.S., Pugazhendhi, A., Gopalakrishnan, K., Sivagurunathan, P., Saratale, G.D., Dung, T.N.B., Kannapiran, E., 2017. Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnol. Reports 14, 1-7. https://doi.org/10.1016/j.btre.2017.02.001
  • 42. Rascio, V.J.D., 2000. Antifouling coatings: Where do we go from here. Corros. Rev. 18, 133-154. https://doi.org/10.1515/CORRREV.2000.18.2-3.133
  • 43. Ravikumar, S., Gnanadesigan, M., Suganthi, P., Ramalakshmi, A.,2010. Antibacterial potential of chosen mangrove plants against isolated urinary tract infectious bacterial pathogens. Int. J.Med. Med. Sci. 2, 94-99.
  • 44. Riedl, R., 1970. Fauna und Flora der Adria. Verlag Paul Parey, Hamburg und Berlin, 702 pp. https://doi.org/10.1007/BF02285734 Sahoo, G., Mulla, N.S.S., Ansari, Z.A., Mohandass, C., 2012. Antibacterial activity of mangrove leaf extracts against human pathogens. Indian J. Pharm. Sci. 74, 348-351. https://doi.org/10.4103/0250-474X.107068
  • 45. Selvin, J., Manilal, A., Sujith, S., Kiran, G.S., Shakir, C., 2009. Biopotentials of Mangroves Collected from the Southwest Coast of India. Glob. J. Biotechnol. Biochem. 4, 59-65.
  • 46. Shamsuddin, A.A., Najiah, M., Suvik, A., Azariyah, M.N., Kamaruzzaman, B.Y., Effendy, A.W., Akbar John, B., 2013. Antibacterial properties of selected mangrove plants against vibrio species and its cytotoxicity against Artemia salina. World Appl. Sci. J. 25, 333-340. https://doi.org/10.5829/idosi.wasj.2013.25.02.688
  • 47. Shah, M., Fawcett, D., Sharma, S., Tripathy, S.K., Poinern, G.E.J., 2015. Green synthesis of metallic nanoparticles via biological entities. Materials 8, 7278-7308. https://doi.org/10.3390/ma8115377
  • 48. Shi, D., Li, J., Guo, S., Han, L., 2008. Antithrombotic effect of bromophenol, the alga-derived thrombin inhibitor. J. Biotechnol. 136, 577-588. https://doi.org/10.1016/j.jbiotec.2008.07.1364
  • 49. Shide, M., 1989. The corrosive effect of barnacles on low alloy steels. Chinese J. Oceanol. Limnol. 7, 271-273. https://doi.org/10.1007/BF02842617
  • 50. Tang, Z.X., Qian, J.Q., Shi, L.E., 2007. Preparation of chitosan nanoparticles as carrier for immobilized enzyme. Appl. Biochem. Biotechnol. 136, 77-96. https://doi.org/10.1007/BF02685940 Tikhonov, V.E., Stepnova, E.A., Babak, V.G., Yamskov, I.A., Palma-Guerrero, J., Jansson, H.B., Lopez-Llorca, L.V, Salinas, J., Gerasimenko, D.V, Avdienko, I.D., Varlamov, V.P., 2006. Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2(3)-(dodec-2-enyl) succinoyl/-derivatives. Carbohydr. Polym. 64, 66-72. https://doi.org/10.1016/j.carbpol.2005.10.021
  • 51. Venkatesan, J., Qian, Z.J., Ryu, B., Ashok Kumar, N., Kim, S.K., 2011. Preparation and characterization of carbon nanotube-grafted-chitosan — Natural hydroxyapatite composite for bone tissue engineering. Carbohydr. Polym. 83, 569-577. https://doi.org/10.1016/j.carbpol.2010.08.019
  • 52. Wang, K.L., Wu, Z.H., Wang, Y., Wang, C.Y., Xu, Y., 2017. Mini-review: Antifouling natural products from marine microorganisms and their synthetic analogs. Mar. Drugs 15, 1-21. https://doi.org/10.3390/md15090266
  • 53. Zabala, M., Maluquer, P., 1988. Illustrated keys for the classification of Mediterranean Bryozoa. Treballs — Mus. Zool. 4, 1-294.
  • 54. Zbakh, H., Chiheb, H., Bouziane, H., Sánchez, V.M., Riadi, H., 2012. Antibacterial Activity of Benthic Marine Algae Extracts from the Mediterranean coast of Morocco. J. Microbiol. Biotechnol. Food Sci. 1, 219-228.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-40a7d3d0-4e42-47b9-964d-43ebeafcf4d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.