Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 23, nr 2 | 66--78
Tytuł artykułu

The method of developing the complex stress tensor by basic states for the construction solutions of spatial boundary problems of the linear elasticity theory

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The apparatus of holomorphic functions of many complex variables is applied to solving spatial boundary value problems of the linear theory of elasticity. The construction of the solution of the boundary value problem is based on the representation of the displacement vector in the form of J. Dougall through spatial harmonic potentials. The transition from spatial harmonic potentials to holomorphic functions of two complex variables z1, z2 was carried out and a boundary value problem for the above functions was formulated. By presenting these holomorphic functions in the form of homogeneous polynomials of order k relative to complex variables z1 , z2 , solutions were constructed by the method of development of the complex tensor of stresses by basic states. The application of this technique is illustrated in the examples of marginal problems, the real components of solutions that correspond to the solutions of Grashof’s problem for an elastic beam. Imaginary components of exact analytical solutions are obtained and corresponding structures of external load vectors for elastic beams of complex cross-section are constructed.
Wydawca

Rocznik
Strony
66--78
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
  • Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, Lviv, Ukraine, viktor.v.pabyrivskyi@lpnu.ua
  • Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, Lviv, Ukraine, petro.y.pukach@lpnu.ua
Bibliografia
  • 1. Lurie, S.A., Volkov-Bogorodskiy, D.B., & Belov, P.A. (2023). On general representations of Papkovich-Neuber solutions in gradient elasticity. Lobachevskii Journal of Mathematics, 44, 2336-2351. DOI: 10.1134/S199508022306032X.
  • 2. Solyaev, Y.O., & Korolenko, V.A. (2023). Application of Papkovich-Neuber general solution for crack problems in strain gradient elasticity. Lobachevskii Journal of Mathematics, 44, 2469-2479. DOI: 10.1134/S1995080223060434.
  • 3. Solyaev, Y.O. (2022). Complete general solutions for equilibrium equations of isotropic strain gradient elasticity. DOI: 10.48550/arXiv.2207.08863.
  • 4. Kong, D., Cui, Z., Pan, Y., & Zhang, K. (2012). On the Papkovich-Neuber formulation for stocks flows driven by translating/rotating prolate spheroid at angles. International Journal of Pure and Applied Mathematics, 75(4), 455-483.
  • 5. Ike, C.C., Onah, H.N., & Nwoji, C.U. (2017). Bessel functions for axisymmetric elasticity problems of the elastic half space soil: a potential function method. Nigerian Journal of Technology, 36(3), 773-781. DOI: 10.4314/njt.v36i3.16.
  • 6. Palaniappan, D. (2011). A general solution of equations of equilibrium in linear elasticity, Applied Mathematical Modelling, 35, 5494-5499. DOI: 10.1016/j.apm.2011.01.041.
  • 7. Wang, M.Z., Xu, B.X, & Gao, C.F. (2008). Recent general solutions in linear elasticity and their applications. Applied Mechanics Reviews, 61(3). DOI: 10.1115/1.2909607.
  • 8. Revenko, V.P. (2009). Solving the three-dimensional equations of the linear theory of elasticity. International Journal of Applied Mechanics, 45(7), 730-741. DOI: 10.1007/s10778-009-0225-4.
  • 9. Pabyrivskyi, V., Pukach, P., Pabyrivska, N., & Beregova, G. (2022). Concretization of the mathematical models of linear elasticity theory by representation of general solution in terms of harmonic potentials in Papkovich-Neuber form. Proceedings of the Romanian Academy Series A – Mathematics, Physics, Technical Sciences, Information Science, 23(2), 113-121.
  • 10. Aleksandrovich, A.I. (1977). Applying the theory of functions of two complex variables to the theory of elasticity. Doklady Akademii Nauk SSSR, 232(3), 542-544.
  • 11. Polozhiy, G.N. (1973). Theory and Application of p-analytical and (p, q)-analytical Functions. Kyiv: Naukova Dumka.
  • 12. Sharafutdinov, G.Z. (2018). The application of complex potentials to the problems of plane stress state for an inhomogeneous material. Mechanics of Solids, 53, 146-154. DOI: 10.3103/ S0025654418030135.
  • 13. Onopriienko, O., Loboda, V., Sheveleva, A., & Lapusta, Y. (2018). An interface crack with mixed electro-magnetic conditions at it faces in a piezoelectric/piezomagnetic bimaterial under antiplane mechanical and in-plane electric loadings. Acta Mechanica et Automatica, 12(4), 301-310. DOI: 10.2478/ama-2018-0046.
  • 14. Matysiak, S.J., Kulchytsky-Zhygailo, R., & Petrowski, D.M. (2018). Stress distribution in an elastic layer resting on a Winkler foundation with an emptiness. Bulletin of the Polish Academy of Sciences: Technical Sciences, 66(53), 721-727. DOI: 10.24425/125339.
  • 15. Chigirinsky, V., & Naumenko, O. (2019). Studying the stressed state of elastic medium using the argument functions of a complex variable. Eastern-European Journal of Enterprise Technologies, 5/7(101), 27-35. DOI: 10.15587/1729-4061.2019.177514.
  • 16. Dougall, J. (1914). An analytical theory of the equilibrium of an isotropic elastic rod of circular section. Transaction of Royal Society, Edinburg, 49(17), 895-978.
  • 17. Pabyrivskyi, V., & Burak, Y. (2023). Method of Holomorphic Functions of Two Complex Variables for Spatial Problems of the Elasticity Theory. Lviv: Spolom.
  • 18. Timoshenko, S.P., & Goodier, J.N. (1970). Theory of Elasticity. 3rd ed., New York: McGraw Hill.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-40500d80-1dc9-4578-824a-6f481d584b93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.