Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | no. 62 | 57--67
Tytuł artykułu

Determining an optimal run-off coefficient method for estimating peak discharge in the Lesti River catchment

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The run-off coefficients provide vital hydrological data used for river discharge forecasts and flood risk management. Selecting an appropriate method to determine this coefficient is essential for accurately estimating peak discharge. This study compared the effectiveness of the Hassing, Cook, and U.S. Forest Service methods integrating GIS in estimating run-off coefficients in the Lesti River catchment area from 2013 to 2019. The findings revealed that the run-off coefficient was determined to be 0.188-0.243 using the U.S. Forest Service method, 0.194-0.213 using the Hassing method, and 0.466-0.480 using the Cook method. These results showed a rapid increase in the run-off coefficient within the Lesti River catchment area, signifying a heightened susceptibility to flooding. This is particularly concerning as the Lesti River is a primary tributary to the Brantas River. The comparison of estimated versus observed peak discharge emphasised the superiority of the runoff coefficient associated with the Hassing method over alternative methodologies when utilised as input data for peak discharge estimation. This was evident by the notable measurement error values of 11% for MAPE and 0.58 for MAE. The Hassing method emerged as the most appropriate and reliable for reflecting run-off characteristics in the Lesti River catchment area. Additionally, it proved to be the most accurate for estimating run-off coefficients in the Nakayasu process for peak discharge estimation. Consequently, applying the Hassing method offers a viable strategy for effectively mitigating flood risks in the Lesti catchment area.
Wydawca

Rocznik
Tom
Strony
57--67
Opis fizyczny
Bibliogr. 35 poz., mapy, rys., tab.
Twórcy
  • Universitas Brawijaya, Faculty of Engineering, Department Civil Engineering Department, Jalan M.T. Haryono No. 167, Kelurahan Ketawanggede, Kecamatan. Lowokwaru, Kota Malang, Jawa Timur 65145, Indonesia, muhtaufikiqbal@student.ub.ac.id
  • Universitas Brawijaya, Faculty of Engineering, Department Civil Engineering Department, Jalan M.T. Haryono No. 167, Kelurahan Ketawanggede, Kecamatan. Lowokwaru, Kota Malang, Jawa Timur 65145, Indonesia, agus.s@ub.ac.id
  • Universitas Brawijaya, Faculty of Engineering, Department Civil Engineering Department, Jalan M.T. Haryono No. 167, Kelurahan Ketawanggede, Kecamatan. Lowokwaru, Kota Malang, Jawa Timur 65145, Indonesia, ruslin@ub.ac.id
  • Universitas Brawijaya, Faculty of Engineering, Department Civil Engineering Department, Jalan M.T. Haryono No. 167, Kelurahan Ketawanggede, Kecamatan. Lowokwaru, Kota Malang, Jawa Timur 65145, Indonesia, yatnanta@ub.ac.id
Bibliografia
  • Abdulwahd, A.K. et al. (2020) “Water runoff estimation Using Geographical Information System (GIS) for Alrakhmah Basin Valley Northeast of Iraq,” Engineering, 12(06), pp. 315–324. Available at: https://doi.org/10.4236/eng.2020.126025.
  • Al.-Amri, N.S., Ewea, H.A. and Elfeki, A.M. (2022) “Revisit the rational method for flood estimation in the Saudi arid environment,” Arabian Journal of Geosciences, 15(6), 532. Available at: https://doi.org/10.1007/s12517-021-09219-0.
  • Almeida, A.K. et al. (2022) “The time of concentration application in studies around the world: A review,” Environmental Science and Pollution Research, 29(6), pp. 8126–8172. Available at: https://doi.org/10.1007/s11356-021-16790-2.
  • Ansori, M.B., Lasminto, U. and Kartika, A.A.G. (2023) “Flood hydrograph analysis using synthetic unit hydrograph, HEC-HMS, and HEC-RAS 2D unsteady flow precipitation on-grid model for disaster risk mitigation,” International Journal of GEOMATE, 25(107), pp. 50–58. Available at: https://doi.org/10.21660/2023.107.3719.
  • Asdak, C. (2020) Hidrologi dan pengelolaan Daerah Aliran Sungai [Hydrology and management of watersheds]. Yogyakarta: Gadjah Mada University Press.
  • Auliyani, D. and Nugrahanto, E.B. (2020) “Peak discharge in Jemelak Subwatershed, Sintang District,” Jurnal Sylva Lestari, 8(3), 273. Available at: https://doi.org/10.23960/jsl38273-282.
  • Baiamonte, G. (2020) “A rational runoff coefficient for a revisited rational formula,” Hydrological Sciences Journal, 65(1), pp. 112–126. Available at: https://doi.org/10.1080/02626667.2019.1682150.
  • BIG (2023) Ina-Geoportal. Badan Informasi Geospacial Available at: https://tanahair.indonesia.go.id/portal-web (Accessed: January 15, 2024).
  • Boothroyd, R.J. et al. (2023) “National-scale geodatabase of catchment characteristics in the Philippines for river management applications,” PLoS ONE, 18(3), e0281933. Available at: https://doi.org/10.1371/journal.pone.0281933.
  • D’Alberto, L. and Lucianetti, G. (2019) “Misinterpretation of the Kenessey method for the determination of the runoff coefficient: A review,” Hydrological Sciences Journal, 64(3), pp. 288–296. Available at: https://doi.org/10.1080/02626667.2019.1578965.
  • Dharmayasa, I.G.N.P. et al. (2022) “Investigation on impact of changes in land cover patterns on surface runoff in Ayung Watershed, Bali, Indonesia using Geographic Information System,” Environment and Natural Resources Journal, 20(2), pp. 168–178. Available at: https://doi.org/10.32526/ennrj/20/202100161.
  • Februanto, A.J., Limantara, L.M. and Fidari, J.S. (2021) “Analisis curah hujan serial terhadap debit maksimum di Sub DAS Lesti, DAS Brantas, Provinsi Jawa Timur [Analysis of serial rainfall on maximum discharge in the Lesti Sub-Watershed, Brantas Watershed, East Java Province],” Jurnal Teknologi dan Rekayasa Sumber Daya Air, 1(2), pp. 826–838. Available at: https://doi.org/10.21776/ub.jtresda.2021.001.02.40.
  • Goodwin, P. and Lawton, R. (1999) “On the asymmetry of the symmetric MAPE,” International Journal of Forecasting, 15(4), pp. 405–408. Available at: https://doi.org/10.1016/S0169-2070(99)00007-2.
  • Hassing (2005) “Hydrology,” in B. Thagesen (ed.) Highway and traffic engineering in developing countries. London: E & FN SPON, pp. 198–210.
  • Iqbal, M.T. et al. (2023) “Selecting the accurate hydrological method for estimating peak discharge in the Lesti River catchment area, Malang Regency, East Java Province, Indonesia,” Journal of Applied and Natural Science, 15(4), pp. 1595–1607. Available at: https://doi.org/10.31018/jans.v15i4.5087.
  • Lallam, F., Megnounif, A. and Ghenim, A.N. (2018) “Estimating the runoff coefficient using the analytic hierarchy process,” Journal of Water and Land Development, 38(1), pp. 67–74. Available at: https://doi.org/10.2478/jwld-2018-0043.
  • Ma, Y. et al. (2020) “An innovative approach for improving the accuracy of digital elevation models for cultivated land,” Remote Sensing, 12(20), 3401. Available at: https://doi.org/10.3390/rs12203401.
  • Machado, R.E., Cardoso, T.O. and Mortene, M.H. (2022) “Determination of runoff coefficient (C) in catchments based on analysis of precipitation and flow events,” International Soil and Water Conservation Research, 10(2), pp. 208–216. Available at: https://doi.org/10.1016/j.iswcr.2021.09.001.
  • Mahmoud, S.H. (2014) “Investigation of rainfall-runoff modeling for Egypt by using remote sensing and GIS integration,” Catena, 120, pp. 111–121. Available at: https://doi.org/10.1016/j.catena.2014.04.011.
  • Mengistu, T.D. et al. (2022) “Impacts and implications of land use land cover dynamics on groundwater recharge and surface runoff in East African watershed,” Water, 14(13). Available at: https://doi.org/10.3390/w14132068.
  • Miardini, A. and Susanti, P.D. (2016) “Analysis physical characteristics of land for estimated runoff coefficient as flood control effort in Comal watershed, Central Java,” Forum Geografi, 30, pp. 58–68.
  • Moges, E. et al. (2021) “Review: Sources of hydrological model uncertainties and advances in their analysis,” Water, 13(1), 28. Available at: https://doi.org/10.3390/w13010028.
  • Nagy, E.D., Szilagyi, J. and Torma, P. (2022) “Estimation of catchment response time using a new automated event-based approach,” Journal of Hydrology, 613, 128355. Available at: https://doi.org/10.1016/j.jhydrol.2022.128355.
  • Natakusumah, D.K., Hatmoko, W. and Harlan, D. (2011) “Prosedur umum perhitungan hidrograf satuan sintetis dengan cara ITB dan beberapa contoh penerapannya [General procedure for calculating synthetic unit hydrographs using the ITB method and several examples of its application],” Jurnal Teknik Sipil, 18(3), 251. Available at: https://doi.org/10.5614/jts.2011.18.3.6.
  • Pambudi, A.S. and Moersidik, S.S. (2019) “Conservation direction based on estimation of erosion in Lesti sub-watershed, Malang District,” IOP Conference Series: Earth and Environmental Science, 399(1), 012097. Available at: https://doi.org/10.1088/1755-1315/399/1/012097.
  • Pambudi, A.S., Moersidik, S.S. and Karuniasa, M. (2021) “Analysis of recent erosion hazard levels and conservation policy recommendations for Lesti Subwatershed, Upper Brantas watershed,” Jurnal Perencanaan Pembangunan: The Indonesian Journal of Development Planning, 5(1), pp. 71–93. Available at: https://doi.org/10.36574/jpp.v5i1.167.
  • Phan, N.T., Kuch, V. and Lehnert, L.W. (2020) “Land cover classification using Google Earth engine and random forest classifier-the role of image composition,” Remote Sensing, 12(15), 2411. Available at: https://doi.org/10.3390/RS12152411.
  • Ren, L. and Glasure, Y. (2009) “Applicability of the revised mean absolute percentage errors (MAPE) approach to some popular normal and non-normal independent time series,” International Advances in Economic Research, 15(4), pp. 409–420. Available at: https://doi.org/10.1007/s11294-009-9233-8.
  • Roestamy, M. and Fulazzaky, M.A. (2021) “A review of the water resources management for the Brantas River basin: Challenges in the transition to an integrated water resources management,” Environment, Development and Sustainability, 24, pp. 11514–11529. Available at: https://doi.org/10.1007/s10668-021-01933-9.
  • Saddique, N., Mahmood, T. and Bernhofer, C. (2020) “Quantifying the impacts of land use/land cover change on the water balance in the afforested River Basin, Pakistan,” Environmental Earth Sciences, 79(19), 448. Available at: https://doi.org/10.1007/s12665-020-09206-w.
  • Saidah, H., Wirahman, L. and Hidayaturrohmi, L. (2023) “Evaluasi kinerja metode perhitungan koefisien pengaliran [Evaluation of the performance of the flow coefficient calculation method],” Jurnal Sains Teknologi & Lingkungan, 9(1), pp. 74–85. Available at: https://doi.org/10.29303/jstl.v9i1.405.
  • Suharyanto, A. (2021) “Estimating flood inundation depth along the arterial road based on the rainfall intensity,” Civil and Environmental Engineering, 17(1), pp. 66–81. Available at: https://doi.org/10.2478/cee-2021-0008.
  • Suharyanto, A., Devia, Y.P. and Wijatmiko, I. (2021) “Floodway design affected by land use changes in an urbanized area,” Journal of Water and Land Development, 49, pp. 259–266. Available at: https://doi.org/10.24425/jwld.2021.137120.
  • Suprayogi, S. et al. (2022) “Runoff coefficient analysis after regional development in Tambakbayan Watershed, Yogyakarta, Indonesia,” Jurnal Ilmu Lingkungan, 20(2), pp. 396–405. Available at: https://doi.org/10.14710/jil.20.2.396-405.
  • Yan, Y. et al. (2020) “The accuracy of drainage network delineation as a function of environmental factors: A case study in Central and Northern Sweden,” Hydrological Processes, 34(26), pp. 5489–5504. Available at: https://doi.org/10.1002/hyp.13963.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-404b820c-2c0b-4fcc-802e-50a2a50dc6eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.