Warianty tytułu
Cechy mineralogiczno-petrograficzne i właściwości fizyko-mechaniczne piaskowca Macigno w rejonie Vellano (Pistoia, Toskania, Włochy)
Języki publikacji
Abstrakty
The sandstones belonging to the terrigenous deposits of the Macigno Formation (Late Oligocene-Early Miocene) were widely used as building stones in Tuscany (Italy) for the wide distribution of their outcrops and the good qualities of the extracted stone. This research reports the petrographic and mineralogical data, and the physical and mechanical test values collected to evaluate the main technical properties of the Macigno sandstones from the Vellano area, with the purpose of comparing the quality of the stones extracted in this area with those from other quarries in north-western Tuscany. The results, obtained analysing 21 samples from the Vellano quarry and its surroundings, show that sandstones cropping out here are characterized by medium to medium-fine sand-sized grains made up of quartz, K-feldspar, plagioclases, phyllosilicates, lithic fragments, and accessory. Clayey materials and calcite are present as matrix and cement, respectively. The clay fraction is made up of mica-like minerals, chlorite, chlorite/smectite interlayers and, in some samples, corrensite and kaolinite. From the physical and mechanical point of view the analysed samples show low porosity and high flexural and compressive strengths. Compared to the other Macigno sandstone samples from north-western Tuscany, the best samples of Vellano stone show rather comparable mechanical resistance than those quarried at Matraia in Lucca province, which today is another active quarry of sure interest for the good quality of the extracted material.
Czasopismo
Rocznik
Tom
Strony
351--360
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
autor
- Department of Earth Sciences, University of Pisa, Via S. Maria 53 - 56126, Pisa, Italy, marco.lezzerini@unipi.it
autor
- Department of Geosciences, Universität Tübingen, Schnarrenbergstr. 94-96 - 72076 Tübingen, Germany, andrea.aquino@uni-tuebingen.de
autor
- Department of Earth Sciences, University of Pisa, Via S. Maria 53 - 56126, Pisa, Italy, claudio.dipetta@studenti.unipi.it
autor
- Department of Prehistory, Archaeology and Ancient History, University of Valencia, Avenida de Blasco Ibañez 28 - 46010 Valencia, Spain, gianni.gallello@uv.es
autor
- Department of Earth Sciences, University of Pisa, Via S. Maria 53 - 56126, Pisa, Italy, stefano.pagnotta@unipi.it
Bibliografia
- 1. L. Carmignani and A. Lazzarotto, “Carta geologica della Toscana (scala 1: 250.000),” Univ. di Siena, Reg. Toscana. Litografia Artist. Cartogr. Firenze, 2004.
- 2. U. Amendola et al., “Composition and provenance of the Macigno formation (late Oligocene–early Miocene) in the Trasimeno lake area (northern Apennines),” Mar. Pet. Geol., vol. 69, pp. 146–167, 2016.
- 3. G. Di Battistini, T. Mannoni, M. Lezzerini, M. Franzini, and C. Rapetti, Arenaria: pietra ornamentale e da costruzione nella Lunigiana. Silva, 2008.
- 4. G. Sestini, “Flysch facies and turbidite sedimentology,” Sediment. Geol., vol. 4, no. 3–4, pp. 559–597, 1970.
- 5. E. Deneke and K. Günther, “Petrography and arrangement of Tertiary graywacke and sandstone sequences of the Northern Apennines,” Sediment. Geol., vol. 28, no. 3, pp. 189–230, 1981, doi: 10.1016/0037-0738(81)90065-8.
- 6. R. Valloni and G. G. Zuffa, “Provenance changes for arenaceous formations of the northern Apennines, Italy,” Geol. Soc. Am. Bull., vol. 95, no. 9, pp. 1035–1039, 1984.
- 7. R. Valloni, D. Lazzari, and M. A. Calzolari, “Selective alteration of arkose framework in OligoMiocene turbidites of the Northern Apennines foreland: impact on sedimentary provenance analysis,” Geol. Soc. London, Spec. Publ., vol. 57, no. 1, pp. 125–136, 1991.
- 8. P. Bruni, N. Cipriani, and E. Pandeli, “New sedimentological and petrographical data on the OligoMiocene turbiditic formations of the Tuscan Domain,” Mem. Soc. Geol. It, vol. 48, no. 1, pp. 251–260, 1994.
- 9. P. Bruni, N. Cipriani, and E. Pandeli, “Sedimentological and petrographical features of the Macigno and the Monte Modino Sandstone in the Abetone area (Northern Apennines),” Mem. Soc. Geol. It, vol. 48, pp. 331–341, 1994.
- 10. G. Cornamusini, “Compositional evolution of the Macigno Fm. of southern Tuscany along a transect from the Tuscan coast to the Chianti Hills,” Boll. Soc. Geol. It., Vol. Spec, vol. 1, no. 1, pp. 365–374, 2002.
- 11. E. Dinelli, F. Lucchini, A. Mordenti, and L. Paganelli, “Geochemistry of Oligocene-Miocene sandstones of the northern Apennines (Italy) and evolution of chemical features in relation to provenance changes,” Sediment. Geol., vol. 127, no. 3–4, pp. 193–207, 1999, doi: 10.1016/S0037-0738(99)00049-4.
- 12. G. Cornamusini and A. Costantini, “Sedimentology of a Macigno turbidite section in the PiombinoBaratti area (northern Apennines, Italy),” G. di Geol., vol. 59, no. 1–2, pp. 129–141, 1997.
- 13. P. C. van de Kamp and B. E. Leake, “Petrology and geochemistry of siliciclastic rocks of mixed feldspathic and ophiolitic provenance in the Northern Apennines, Italy,” Chem. Geol., vol. 122, no. 1–4, pp. 1–20, 1995, doi: 10.1016/0009-2541(94)00162-2.
- 14. M. Lezzerini, M. Franzini, G. Di Battistini, and D. Zucchi, “The «Macigno» sandstone from Matraia and Pian di Lanzola quarries (north-western Tuscany, Italy). A comparison of physical and mechanical properties,” Atti Soc. Tosc. Sci. Nat., Mem., Ser. A, vol. 113, pp. 71–79, 2008.
- 15. E. Cantisani, C. A. Garzonio, M. Ricci, and S. Vettori, “Relationships between the petrographical, physical and mechanical properties of some Italian sandstones,” Int. J. Rock Mech. Min. Sci., vol. 60, pp. 321–332, 2013.
- 16. M. Franzini, L. Leoni, M. Lezzerini, and R. Cardelli, “Relationships between mineralogical composition, water absorption and hydric dilatation in the ‘Macigno’ sandstones from Lunigiana (Massa, Tuscany),” Eur. J. Mineral., 2007, doi: 10.1127/0935-1221/2007/0019-0113.
- 17. L. Leoni, M. Lezzerini, S. Battaglia, and F. Cavalcante, “Corrensite and chlorite-rich Chl-S mixed layers in sandstones from the ‘Macigno’ Formation (northwestern Tuscany, Italy),” Clay Miner., vol. 45, no. 1, pp. 87–106, 2010, doi: 10.1180/claymin.2010.045.1.87.
- 18. A. Gioncada, L. Leoni, M. Lezzerini, and D. Miriello, “Relationships between mineralogical and textural factors in respect to hydric dilatation of some sandstones and meta-sandstones from the Northern Apennine,” Ital. J. Geosci., vol. 130, no. 3, pp. 394–403, 2011, doi: 10.3301/IJG.2011.16.
- 19. S. Scrivano, L. Gaggero, J. Gisbert Aguilar, T. de Kock, H. Derluyn, and V. Cnudde, “Texture and mineralogy influence on durability: the Macigno Sandstone,” Q. J. Eng. Geol. Hydrogeol., vol. 50, no. Special issue-Constructional Geomaterials, pp. 393–401, 2017, doi: https://doi.org/10.1144/qjegh2016-107.
- 20. S. Scrivano, L. Gaggero, and J. G. Aguilar, “Micro-porosity and minero-petrographic features influences on decay: Experimental data from four dimension stones,” Constr. Build. Mater., vol. 173, pp. 342–349, 2018.
- 21. M. Franzini, M., Leoni, L., Saitta, “Revisione di una metodologia analitica per fluorescenza-X, basata sulla correzione completa degli effetti di matrice,” Rend. Soc. It. Miner. Petrog., vol. 31, no. 2, pp. 365–378, 1975.
- 22. M. Lezzerini, M. Tamponi, and M. Bertoli, “Calibration of XRF data on silicate rocks using chemicals as in-house standards,” Atti Soc. Tosc. Sci. Nat., Mem., Ser. A, vol. 121, 2014, doi: 10.24.24/ASTSN.M.2014.16.
- 23. M. Lezzerini, M. Tamponi, and M. Bertoli, “Reproducibility, precision and trueness of X-ray fluorescence data for mineralogical and/or petrographic purposes,” Atti Soc. Tosc. Sci. Nat. Mem. Ser. A, vol. 120, 2013, doi: 10.2424/ASTSN.M.2013.15.
- 24. G. Leone, L. Leoni, and F. Sartori, “Revisione di un metodo gasometrico per la determinazione di calcite e dolomite,” Atti Soc. Tosc. Sci. Nat., Mem., Ser. A, vol. 95, pp. 7–20, 1988.
- 25. R. V Ingersoll, T. F. Bullard, R. L. Ford, J. P. Grimm, J. D. Pickle, and S. W. Sares, “The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method,” J. Sediment. Res., vol. 54, no. 1, pp. 103–116, 1984.
- 26. G. G. Zuffa, “Optical analyses of arenites: influence of methodology on compositional results,” Proven. arenites, pp. 165–189, 1985.
- 27. W. R. Dickinson, “Interpreting detrital modes of graywacke and arkose,” J. Sediment. Res., vol. 40, no. 2, pp. 695–707, 1970.
- 28. R. V Ingersoll and C. A. Suczek, “Petrology and provenance of Neogene sand from Nicobar and Bengal fans, DSDP sites 211 and 218,” J. Sediment. Res., vol. 49, no. 4, pp. 1217–1228, 1979.
- 29. S. Critelli and E. Le Pera, “Detrital modes and provenance of Miocene sandstones and modern sands to the Southern Apennines thrust-top basins (Italy),” J. Sediment. Res., vol. 64, no. 4a, pp. 824–835, 1994.
- 30. S. Critelli and R. V Ingersoll, “Interpretation of neovolcanic versus palaeovolcanic sand grains: an example from Miocene deep‐marine sandstone of the Topanga Group (Southern California),” Sedimentology, vol. 42, no. 5, pp. 783–804, 1995.
- 31. EN 1936:2006, “Natural stone test methods - Determination of real density and apparent density, and of total and open porosity.” .
- 32. EN 1925:1999, “Natural stone test methods - Determination of water absorption coefficient by capillary.”
- 33. EN 13755:2008, “Natural stone test methods - Determination of water absorption at atmospheric pressure.”
- 34. M. Franzini and M. Lezzerini, “A mercury-displacement method for stone bulk-density determinations,” Eur. J. Mineral., vol. 15, no. 1, pp. 225–229, 2003, doi: 10.1127/0935-1221/2003/0015-0225.
- 35. EN 1926:2006, “Natural stone test methods - Determination of uniaxial compressive strength.”
- 36. EN 12372:2020, “Natural stone test methods — Determination of flexural strength under concentrated load.”
- 37. EN 12371:2010, “Natural stone test methods - Determination of frost resistance.”
- 38. EN 14158:2004, “Natural stone test methods - Determination of rupture energy.”
- 39. EN 14157:2017, “Natural stone test methods - Determination of the abrasion resistance.”
- 40. EN 14205:2003, “Natural stone test methods-determination of Knoop hardness.”
- 41. A. Aquino, C. Di Petta, S. Pagnotta, M. Tamponi, and M. Lezzerini, “Macigno sandstone from Garfagnana and Vellano (north-western Tuscany): Chemical, mineralogical, petrographic and physical characterization of a building material,” in 2020 IMEKO TC-4 International Conference on Metrology for Archaeology and Cultural Heritage, 2020.
- 42. A. Aquino, P. Baglini, S. Pagnotta, M. Tamponi, and M. Lezzerini, “Macigno sandstone from Monti d’Oltre Serchio: Chemical, mineralogical, petrographic and physical characterization of a building material,” in 2020 IMEKO TC-4 International Conference on Metrology for Archaeology and Cultural Heritage, 2020.
- 43. G. M. Bargossi, P. Felli, and F. Guerrieri, “Pietra serena,” Mater. della città. Aida ed., Firenze, vol. 200, 2002.
- 44. M. M. Herron, “Geochemical classification of terrigenous sands and shales from core or log data,” J. Sediment. Res., vol. 58, no. 5, pp. 820–829, 1988.
- 45. F. J. Pettijohn, P. E. Potter, and R. Siever, Sand and sandstone. Springer Science & Business Media, 2012.
- 46. H. Blatt, G. V Middleton, and R. C. Murray, “Origin of sedimentary rocks,” 1972.
- 47. S. W. Bailey, “Nomenclature for regular interstratifications,” Clay Miner., vol. 17, no. 2, pp. 243–248, 1982.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3fc494be-9702-4fa3-a1d0-9715302f1fea