Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 23, no. 3 | art. no e167, 2023
Tytuł artykułu

Bi-axial stress state hot bulging behavior and plane-stress visco-plastic material modelling of TA32 sheets

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bi-axial state is the dominant stress state experienced by the sheet metal during various forming processes, which requires a thorough understanding and modelling for process designs. In this paper, effects of equal bi-axial stress-state on the hot deformation behavior of titanium alloys are thoroughly investigated using hot bulging tests, and is further compared to the uniaxial stress state. Firstly, a specific hot bulging test device enabling a uniform temperature field and constant control of strain rate was established, using which, systematic hot bulging tests at various temperatures (750–850 °C) and strain rates (0.001–0.1 s−1) of the near-alpha phase TA32 sheets were conducted to determine the hot equal bi-axial bulging behavior. Based on the testing data of force and geometry variations of bulged domes, the equivalent stress–strain curves were calculated. Secondly, a plane-stress visco-plastic plane-stress model of near-alpha TA32 sheets was developed for the first time, enabling both the uniaxial and biaxial flow behavior and forming limits to be precisely predicted. The prediction accuracies for uniaxial and biaxial cases are 93.5% and 89%, respectively. In the end, the uniform deformation resulting from the strain and strain rate hardening was determined, which contributes to the understanding of the stress-state effect on hardening preliminarily. The plane stress visco-plastic model provides an efficient and reliable material model for finite element (FE) simulations of hot forming titanium alloy sheets.
Wydawca

Rocznik
Strony
art. no e167, 2023
Opis fizyczny
Bibliogr. 30 poz., fot., rys., wykr.
Twórcy
autor
  • Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600, China
  • Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600, China
autor
  • School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
autor
  • Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600, China
autor
  • School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 15001, China, 19B909110@stu.hit.edu.cn
  • Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518000, China
Bibliografia
  • 1. Brewer WD, Bird RK, Wallace TA. Titanium alloys and process- ing for high speed aircraft. Mater Sci Eng A. 1998;243:299–304. https://doi.org/10.1016/S0921-5093(97)00818-6.
  • 2. Wu Y, Lei Fan R, Huan Qin Z, He Chen M. Shape controlling and property optimization of TA32 titanium alloy thin-walled part prepared by hot forming. Trans Nonferrous Met Soc China Eng Ed. 2021. https://doi.org/10.1016/S1003-6326(21)65658-3.
  • 3. Zheng K, Politis DJ, Wang L, Lin J. A review on forming tech- niques for manufacturing lightweight complex—shaped alumin- ium panel components. Int J Lightweight Mater Manuf. 2018. https://doi.org/10.1016/j.ijlmm.2018.03.006.
  • 4. Wang K, Kopec M, Chang S, Qu B, Liu J, Politis DJ, Wang L, Liu G. Enhanced formability and forming efficiency for two-phase titanium alloys by Fast light Alloys Stamping Technology (FAST). Mater Des. 2020;194: 108948. https://doi.org/10.1016/j.matdes. 2020.108948.
  • 5. Yasmeen T, Rahimi S, Hopper C, Zhang C, Jiang J. Unravelling thermal-mechanical effects on microstructure evolution under superplastic forming conditions in a near alpha titanium alloy. J Market Res. 2022;18:4285–302. https://doi.org/10.1016/j.jmrt. 2022.04.063.
  • 6. Dang K, Wang K, Chen W, Liu G. Study on fast gas forming with in-die quenching for titanium alloys and the strengthening mechanisms of the components. J Market Res. 2022;18:3916–32. https://doi.org/10.1016/j.jmrt.2022.04.084.
  • 7. Maeno T, Tomobe M, Mori K, Ikeda Y. Hot stamping of tita- nium alloy sheets using partial contact heating. Proc Manuf. 2018;15:1149–55. https://doi.org/10.1016/j.promfg.2018.07.375.
  • 8. Liu Z, Li P, Geng L, Liu T, Gao H. Microstructure and texture evolution of TA32 titanium alloy during superplastic deformation. Mater Sci Eng A. 2017;699:71–80. https://doi.org/10.1016/j.msea. 2017.05.082.
  • 9. Hu D, Wang L, Wang N, Chen M, Wang H. Hot tensile deforma- tion behaviors of TA32 titanium alloy based on back-propagation neural networks and three-dimensional thermal processing maps. J Market Res. 2022;18:4786–95. https://doi.org/10.1016/j.jmrt. 2022.04.144.
  • 10. Fan R, Wu Y, Chen M, Zhao J. Prediction of anisotropic defor- mation behavior of TA32 titanium alloy sheet during hot ten- sion by crystal plasticity finite element model. Mater Sci Eng A. 2022;843:143137. https://doi.org/10.1016/j.msea.2022.143137.
  • 11. Lin J, Mohamed M, Balint D, Dean TA. The development of con- tinuum damage mechanics-based theories for predicting forming limit diagrams for hot stamping applications. Int J Damage Mech. 2013;23:684–701. https://doi.org/10.1177/1056789513507731.
  • 12. Eder M, Gaber C, Nester W, Hoffmann H, Volk W. Innovative measurement technique to determine equibiaxial flow curves of sheet metals using a modified Nakajima test. CIRP Ann. 2018;67:265–8. https://doi.org/10.1016/j.cirp.2018.04.094.
  • 13. Zhang R, Shi Z, Shao Z, Yardley VA, Lin J, Dean TA. Biaxial test method for determination of FLCs and FFLCs for sheet met- als: validation against standard Nakajima method. Int J Mech Sci. 2021;209: 106694. https://doi.org/10.1016/j.ijmecsci.2021. 106694.
  • 14. Kamaliev M, Kolpak F, Tekkaya AE. Isothermal hot tube mate- rial characterization—forming limits and flow curves of stainless steel tubes at elevated temperatures. J Mater Process Technol. 2022;309:117757. https:// doi. org/ 10. 1016/j. jmatp rotec. 2022. 117757.
  • 15. Zhang R, Shao Z, Lin J. A review on modelling techniques for formability prediction of sheet metal forming. Int J Lightweight Mater Manuf. 2018;1:115–25. https://doi.org/10.1016/j.ijlmm. 2018.06.003.
  • 16. Kotkunde N, Srinivasan S, Krishna G, Gupta AK, Singh SK. Influence of material models on theoretical forming limit dia- gram prediction for Ti–6Al–4V alloy under warm condition. Trans Nonferrous Met Soc China. 2016;26:736–46. https://doi.org/10. 1016/S1003-6326(16)64140-7.
  • 17. Shao Z, Li N, Lin J, Dean TA. Development of a new biaxial test- ing system for generating forming limit diagrams for sheet metals under hot stamping conditions. Exp Mech. 2016;56:1489–500. https://doi.org/10.1007/s11340-016-0183-9.
  • 18. Zhang R, Shao Z, Shi Z, Dean TA, Lin J. Effect of cruciform spec- imen design on strain paths and fracture location in equi-biaxial tension. J Mater Process Technol. 2021;289: 116932. https://doi. org/10.1016/j.jmatprotec.2020.116932.
  • 19. Xiao R, Li X-X, Lang L-H, Song Q, Liu K-N. Forming limit in thermal cruciform biaxial tensile testing of titanium alloy. J Mater Process Technol. 2017;240:354–61. https:// doi. org/ 10. 1016/j. jmatprotec.2016.10.016.
  • 20. Braun A, Waerder M, Hirt G (2016) Forming limit and flow curve determination of hot stamping steels using a hot-gas-bulge test. In: Forming technology forum.
  • 21. Wang K, Song K, Zhao J, Cui S, Peng C, Wang X, Wang L, Liu G. Physically-based constitutive models for hot gas pressure forming of laser-welded titanium alloy blank. J Manuf Process. 2022;82:501–15. https://doi.org/10.1016/j.jmapro.2022.08.021.
  • 22. Fan R, Wu Y, Chen M, Xie L. Relationship among microstruc- ture, mechanical properties and texture of TA32 titanium alloy sheets during hot tensile deformation. Trans Nonferrous Met Soc China. 2020;30:928–43. https://doi.org/10.1016/S1003-6326(20) 65266-9.
  • 23. Liu W, Cheng W, Yuan S. Analyses on formability and flow stress of an Al-Cu-Mn alloy sheet under biaxial stress at cryogenic tem- peratures. Int J Mech Sci. 2021;195:106266. https://doi.org/10. 1016/j.ijmecsci.2021.106266.
  • 24. Zhou W, Lin J, Balint DS, Dean TA. Clarification of the effect of temperature and strain rate on workpiece deformation behav- iour in metal forming processes. Int J Mach Tools Manuf. 2021;171:103815. https:// doi. org/ 10. 1016/j. ijmachtools. 2021. 103815.
  • 25. Wang K, Wang L, Zheng K, He Z, Politis DJ, Liu G, Yuan S. High-efficiency forming processes for complex thin-walled tita- nium alloys components: state-of-the-art and perspectives. Int J Extrem Manuf. 2020;2:032001. https:// doi. org/ 10. 1088/ 2631- 7990/ab949b.
  • 26. Lin J, Dean TA. Modelling of microstructure evolution in hot forming using unified constitutive equations. J Mater Process Technol. 2005;167:354–62. https://doi.org/10.1016/j.jmatprotec. 2005.06.026.
  • 27. Sandström R, Lagneborg R. A model for hot working occurring by recrystallization. Acta Metall. 1975;23:387–98.
  • 28. Alabort E, Putman D, Reed RC. Superplasticity in Ti-6Al- 4V: characterisation, modelling and applications. Acta Mater. 2015;95:428–42. https://doi.org/10.1016/j.actamat.2015.04.056.
  • 29. Lin J, Mohamed M, Balint D, Dean TA. The development of con- tinuum damage mechanics-based theories for predicting forming limit diagrams for hot stamping applications. Int J Damage Mech. 2014;23:684–701.
  • 30. Lee J, Kim S-J, Park H, Bong HJ, Kim D. Metal plasticity and ductile fracture modeling for cast aluminum alloy parts. J Mater Process Technol. 2018;255:584–95. https:// doi. org/ 10. 1016/j. jmatprotec.2017.12.040.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3f8f1686-7c0a-40f6-a6c2-eda9d393f663
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.