Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | R. 91, nr 6 | 134-138
Tytuł artykułu

Effect of grid-connected photovoltaic systems on static and dynamic voltage stability with analysis techniques – a review

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Przegląd metod analizy wpływu podłączenia systemu fotowoltaicznego na właściwości statyczne i dynamiczne sieci
Języki publikacji
EN
Abstrakty
EN
This paper presents an overview on the effect of grid-connected photovoltaic (PV) system on static and dynamic voltage stability and discusses the analysis techniques used to quantify the effect. A review on the published works showed that the PV system design, PV parameters and the distinct design of power system network affect system voltage stability. Furthermore, a discussion is also made on the optimization techniques used for determining optimum PV placement and sizing for the purpose of improving voltage stability.
PL
W artykule dokonano przeglądu metod analizy wpływu dołączenia systemu fotowoltaicznego na właściwości statyczne i dynamiczne sieci. Odpowiedni projekt wpływa na stabilność napięciową. Analizowano też metody optymalizacji położenia systemu.
Wydawca

Rocznik
Strony
134-138
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
  • Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, zt.adibah@gmail.com
autor
  • Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, azah@eng.ukm.my
autor
  • Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, shareef@eng.ukm.my
Bibliografia
  • [1] CAISO, “Small generator interconnection procedures (SGIP) Tariff,” [Online]. Available at http://www.caiso.com./
  • [2] CAISO, “Large generator interconnection procedures (LGIP) for interconnection Request in a Queue Cluster window,” [Online].Available at http://www.caiso.com./
  • [3] CAISO, “Generation interconnection Queue,” [Online]. Available at http://www.caiso.com./
  • [4] Kroposki, B., Margolis, R., Ton, D., “Harnessing the sun,” IEEE Power & Energy Magazine, May/June 2009, vol.7, no., pp.22-33
  • [5] California Independent System Operator Corporation. May 2010. ISO Generator Interconnection Queue. CAISO, Falsom, CA. [Online]. Available at http://www.caiso.com./
  • [6] Kundur, P., Paserba, J., Ajjarapu, V., Andersson, G., Bose, A., Canizares, C., Hatziargyriou, N., Hill, D., Stankovic, A., Taylor, C., Van Cutsem, T., Vittal, V., “ Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions,” IEEE Transactions on Power Systems, May 2004, vol.9, no.3, pp.1387-1401
  • [7] Liu, H., Jin, L., Le, D., Chowdhury, A. A., “Impact of high penetration of solar photovoltaic generation on power system small signal stability,” Power System Technology (POWERCON), 2010 International on, 24-28 Oct. 2010, vol., no., pp.1-7
  • [8] Yagami, M., Kimura, N., Tsuchimoto, M., Tamura, J., “Power system transient stability analysis in the case of highpenetration photovoltaic,” PowerTech (POWERTECH), 2013 IEEE Grenoble, June 2013, vol., no., pp.1-6
  • [9] Yagami, M., Hasegawa, T., Tamura, J., “Transient stability assessment of synchronous generator in power system with high penetration photovoltaic,” 15th International Conference on Electrical Machines and Systems (ICEMS), Oct. 2012, pp.1-6.
  • [10] Yagami, M., Tamura, J., “Impact of high-penetration photovoltaic on synchronous generator stability,” Electric Machines (ICEM), 2012 XXth International Conference on, Sept. 2012, vol., no., pp.2092-2097
  • [11] Alquthami, T., Ravindra, H., Faruque, M.O., Steurer, M., Baldwin, T., “Study of photovoltaic integration impact on system stability using custom model of PV arrays integrated with PSS/E,” North American Power Symposium (NAPS), Sept. 2010, vol., no., pp.1-8, 26-28
  • [12] Abdlrahem, A., Venayagamoorthy, G. K., Corzine, K. A., “Frequency stability and control of a power system with large PV plants using PMU information,” North American Power Symposium (NAPS), Sept. 2013, vol., no., pp.1-6
  • [13] Gurusinghe, D.R., Ongsakul, W., “Particle swarm Optimization for Voltage Stability Analysis,” Electrical Power and Energy Conference (EPEC), IEEE Transaction on, Oct. 2012, vol., no., pp.315-322
  • [14] Guo, R., Han, Z., “An improved zero eigenvalue method for point of collapse,” Proceedings of the CSSE 2000, vol.20, no.5, pp.63-66
  • [15] Duan, X., He, Y., Chen, D., “On some practical criteria and security indices for voltage stability in electric power system,” Automation of Electric Power Systems 1994, vol.18, no.9, pp.36-41
  • [16] Mahmud, M. A., Pota, H. R., Hossain, M. J., “Dynamic stability of three-phase grid-connected photovoltaic system using zero dynamic design approach,” IEEE Journal of Photovoltaics, Oct. 2012, vol.2, no.4, pp.564-571
  • [17] Brenna, M., Faranda, R., Leva, S., “Dynamic analysis of a network topology for high power grid connected PV systems,” IEEE Power and Energy Society General Meeting, July 2010, vol., no., pp.1-7
  • [18] Griffin, T., Tomosovic, K., Secrest, D., Law, A., “Placement of dispersed generations systems for reduced losses,” 3rd International Conference on Sciences, 2000.
  • [19] Sukomomgkol, Y., Chuingpaibulpatana, S., Ongsakul, W., “A simulation model for predicting the performance of solar photovoltaic system with alternating current loads,” Journal on Renewable Energy, 2002, vol.27, no., pp.237-258
  • [20] Senjyua, T., Hayashia, D., Yonaa, A., Urasakia, N., Funabashib, T., “Optimal configuration of power generating systems in isolated island with renewable energy,” Journal on Renewable Energy, 2007, vol.32, no., pp.1917-1933
  • [21] Koutroulis, E., Kolokotsa, D., Potirakis, A., Kalaitzakis, K., “A methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms,” Journal on Solar Energy, 2006, vol.80, no., pp.1072-88
  • [22] Xu, D., Kang, L., Cao, B., “Graph-based ant system for optimal sizing of standalone hybrid wind/PV power systems,” ICIC 2006, LNAI 4114, 2006, vol., no., pp.1136-1146
  • [23] Mellit, A., Kalogirou, S.A., “Application of neural networks and genetic algorithms for predicting the optimal sizing coefficient of photovoltaic supply (PVS) systems,” Proc of the World Renewable Energy Congress IX and Exhibition, Aug 2006.
  • [24] Mellit, A., “ANFIS-based genetic algorithm for predicting the optimal sizing coefficient of photovoltaic supply (PVS) systems,” Proc of the Third International Conference on Thermal Engineering: Theory and Applications, May 2007, vol., no., pp.96-102
  • [25] Arya, L.D., Titare, L.S., Kothari, D.P., “An approach to mitigate the risk of voltage collapse accounting uncertainties using improved particle swarm optimization,” Journal of Applied Soft Computing, 2009, vol.9, no., pp.1197-1207
  • [26] Arya, L.D., Choube, S.C., Shrivastava, M., Kothari, D.P., “Particle swarm optimization for determining shortest distance to voltage collapse,” Journal of Electrical Power and Energy Systems, 2007, vol.29, no., pp.796-802
  • [27] Kumar, G.N., Kalavathi, M.S., “Cat swarm optimization for optimal placement of multiple UPFC’s in voltage stability enhancement under contingency,” Journal of Electrical Power and Energy Systems, 2014, vol.57, no., pp.97-104
  • [28] Abou El-Ela, A.A., Allam, S.M., Shatla, M.M., “Maximal optimal benefits of distributed generation using genetic algorithms,” Electrical Power System Res, 2010, vol.80, pp.869-877
  • [29] Borges, C.L.T., Falcao, D.M., “Optimal distributed generation allocation for reliability, losses, and voltage improvement,” Int Journal on Electrical Power, 2006, vol.28, no.6, pp.413-420
  • [30] Kamel, R.M., Kermanshahi, B., “Optimal size and location of distributed generations for minimizing power losses in a primary distribution network,” Computer Sci Eng Electr Eng Trans D, 2009, vol.16, no.6, pp.137-144
  • [31] Lingfeng, W., Singh, C., “Reliability-constrained optimum placement of reclosers and distributed generators in distribution networks using an ant colony system algorithm,” IEEE Trans Systems, Man Cyber, Part C: Appl Rev, 2008, vol.38, no., pp.757-764
  • [32] Acharya, N., Mahat, P., Mithulananthan, N., “An analytical approach for DG allocation in primary distribution network,” ,” Int Journal on Electrical Power, 2006, vol.28, no.10, pp.669-678
  • [33] Aman, M.M., Jasmon, G.B., Mokhlis, H., Bakar, A.H.A., “Optimal placement and sizing of a DG based on a new power stability index and line losses,” Journal on Electrical Power and Energy Systems, 2012, vol.43, no., pp.1296-1304
  • [34] Aman, M.M., Jasmon, G.B., Bakar, A.H.A., Mokhlis, H., “A new approach for optimum DG placement and sizing based on voltage stability maximization and minimization of power losses,” Journal on Energy Conversion and Management, 2013, vol.70, no., pp.202-210
  • [35] Ishak, R., Mohamed, A., Abdalla, A.N., Che Wanik, M Z., “Optimal placement and sizing of distributed generators based on a novel MPSI index,” Journal on Electrical Power and Energy Systems, 2014, vol.60, no., pp.389-398
  • [36] Kayal, P., Chanda, C.K., “Placement of wind and solar based DGs in distribution system for power loss minimization and voltage stability improvement,” Journal on Electrical Power and Energy Systems, 2013, vol.53, no., pp.795-809
  • [37] Nasiraghdam, H., Jadid, S., “Optimal hybrid PV/WT/FC sizing and distribution system reconfiguration using multi-objective artificial bee colony (MOABC) algorithm,” Journal on Solar Energy, 2012, vol.86, no., pp.3057-3071
  • [38] Hung, D.Q., Mithulananthan, N., Bansal, R.C., “Integration of PV and BES units in commercial distribution systems considering energy loss and voltage stability,” Journal on Applied Energy, 2014, vol.113, no., pp.1162-1170
  • [39] Hernandez, J.C., Medina, A., Jurado, F., “Optimal allocation and sizing for profitability and voltage enhancement of PV systems on feeders,” Journal on Renewable Energy, 2007, vol.32, no., pp.1768-1789
  • [40] Yan, R., Saha, T. K., “Investigation of voltage stability for residential customers due to high photovoltaic penetrations,” IEEE Transactions on Power Systems, May 2012, vol.27, no.2, pp.651-662
  • [41] Xue, Y., Manjrekar, M., Lin, C., Tamayo, M., Jiang, J. N., “Voltage stability and sensitivity analysis of grid-connected photovoltaic systems,” IEEE Power and Energy Society General Meeting, 2011, July 2011, vol., no., pp.1-7
  • [42] Tomson, T., “Fast dynamic processes of solar radiation,” Solar Energy, Feb 2010, vol.84, no.2, pp.318-323
  • [43] Kern, E. C., Gulachenski, E. M., Kern, G. A., “Cloud effects on distributed photovoltaic generation: Slow transients at the gardner, Massachusetts photovoltaic experiment,” IEEE Transactions on Energy Conversion, June 1989, vol. 4, no. 2, pp. 184-190
  • [44] Tonkoski, R., Lopes, L. A. C., “Voltage regulation in radial distribution feeders with high penetration of photovoltaic,” IEEE Conference on Energy 2030, Nov. 2008, vol., no., pp. 1-7
  • [45] Chakravorty, M., Das, D., “Voltage stability analysis of radial distribution networks,” International Journal of Electrical Power and Energy Systems, 2001, vol.23, no., pp.129-135
  • [46] Wong, J., Lim, Y. S., Tang, J. H., Morris, E., “Grid-connected photovoltaic system in Malaysia: A review on voltage issues,” Renewable and Sustainable Energy Reviews, 2014, vol.29, no., pp. 535-545
  • [47] Eftekharnejad, S., Vittal, V., Heydt, G. T., Keel, B., Loehr, J., “Impact of increased penetration of photovoltaic generation on power systems,” IEEE Transactions on Power Systems, May 2013, vol.28, no.2, pp.893-901
  • [48] Aziz, T., Dahal, S., Mithulananthan, N., Saha, T.K., “Impact of widespread penetrations of renewable generation on distribution system stability,” Electrical and Computer Engineering (ICECE), 2010 International Conference on, Dec 2010, vol., no., pp.338-341
  • [49] Azadani, E.N., Canizares, C., Bhattacharya, K., “Modeling and stability analysis of distributed generation,” IEEE PES General Meeting, July 2012, vol., no., pp.1-7
  • [50] Tan, Y.T., Kirschen, D.S., “Impact on the power system of a large penetration of photovoltaic generation,” IEEE Power Engineering Society General Meeting, 2007, June 2007, vol., no., pp.1-7
  • [51] Wang, L., Ching Lin, T., “Dynamic stability and transient response of multiple grid-connected PV systems,” IEEE PES Transmission and Distribution Conference and Exposition, 2008. T&D, April 2008, pp.1-6, 21-24
  • [52] Wang, L., Hao Lin, Y., “Random fluctuations on dynamic stability of grid-connected photovoltaic array,” IEEE Power Engineering Society Winter Meeting, 2001. 2001, vol.3, no., pp.985-989
  • [53] Wang, L., Hao Lin, Y., “Dynamic stability analyses of a photovoltaic array connected to a large utility grid,” IEEE Power Engineering Society Winter Meeting, 2000, vol.1, no., pp.476-480
  • [54] Han, J., Khushalani-Solanki, S., Solanki, J., Schoene, J., “Study of unified control of STATCOM to resolve the power quality issues of a grid-connected three phase PV systems,” has been for static and dynamic analyses. has been for static and dynamic analyses. IEEE PES Innovative Smart Grid Technologies (ISGT), 2012, vol., no., pp.1-7
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3f8b28dd-8e7a-4abe-8555-519e5957a632
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.