Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2024 | R. 63, nr 2 | 112--125
Tytuł artykułu

Experimental study of materials for the filtration of the intake air of the internal combustion engine of a motor vehicle

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fiber composite materials show more favorable filtration properties in terms of filtration efficiency and accuracy, as well as dust absorption. Experimental tests of standard filtration materials based on cellulose, polyester, glass microfiber, cotton and polyester nonwoven fabrics were performed using an original method. Two composite beds consisting of three layers of standard materials were designed using a novel method: K1 (polyester-glass-microfiber-cellulose) and K2 (cellulose-glass-microfiber-cellulose), and determined their effectiveness, the size of dust grains in the cleaned air and the unit dust absorption. It was shown that the K1 composite has high (dpmax = 1.5-3 μm) filtration accuracy, high initial filtration efficiency (99.8%), which shortens the preliminary stage, and extends to 96-98% the duration of the main stage of the filtration process. The K1 composite achieved more than twice the dust mass loading value (kdK1 = 148.9 g/m2), compared to other standard materials. These are parameters that are essential for filter design in automotive technology and can only be obtained through empirical testing. Knowing them will make it possible to make an air filter design with smaller dimensions or to extend vehicle mileage.
Wydawca

Czasopismo
Rocznik
Strony
112--125
Opis fizyczny
Bibliogr. 51 poz., il. kolor., fot., rys., wykr.
Twórcy
Bibliografia
  • [1] Alfadhli A, Alazemi A, Khorshid E. Numerical minimisation of abrasive-dust wear in internal combustion engines. Int J Surf Sci Eng. 2020;14:68-88. https://doi.org/10.1504/IJSURFSE.2020.105891
  • [2] Baddocka MC, Zobeck TM, Van Pelt RS, Fredrickson EL. Dust emissions from undisturbed and disturbed, crusted playa surfaces: cattle trampling effects. Aeolian Res. 2011;3: 31-41. https://doi.org/10.1016/j.aeolia.2011.03.007
  • [3] Barbolini M, Di Pauli F, Traina M. Simulation der Luftfiltration zur Auslegung von Filterelementen. MTZ. 2014; 75:52-57. https://doi.org/10.1007/s35146-014-0556-5
  • [4] Barris MA. Total filtration™: the influence of filter selection on engine wear, emissions, and performance. SAE Technical Paper 952557. 1995. https://doi.org/10.4271/952557
  • [5] Bojdo N, Filippone A. A simple model to assess the role of dust composition and size on deposition in rotorcraft engines. Aerospace. 2019;6(44). https://doi.org/10.3390/aerospace6040044
  • [6] Bojdo N, Filippone A. Effect of desert particulate composition on helicopter engine degradation rate. 40th European Rotorcraft Forum, Southampton. Conference Paper. September 2014. https://doi.org/10.13140/2.1.2959.8086
  • [7] Bugli N. Automotive engine air cleaners - performance trends. SAE Technical Paper 2001-01-1356. 2001. https://doi.org/10.4271/2001-01-1356
  • [8] Cai R-R, Li S-Z, Zhang L-Z, Lei Y. Fabrication and performance of a stable micro/nano composite electret filter for effective PM2.5 capture. Sci Total Environ. 2020; 138297. https://doi.org/10.1016/j.scitotenv.2020.138297
  • [9] Cardozo JIH, Sánchez DFP. An experimental and numerical study of air pollution near unpaved roads. Air Qual Atmos Hlth. 2019;12:471-489. https://doi.org/10.1007/s11869-019-00678-9
  • [10] Dziubak T. Experimental study of a powercore filter bed operating in a two-stage system for cleaning the inlet air of internal combustion engines. Energies. 2023;16:3802. https://doi.org/10.3390/en16093802
  • [11] Dziubak T. Properties of material with nanofiber layer used for filtering the inlet air of internal combustion engines. Combustion Engines. 2019;177(2):66-75. https://doi.org/10.19206/CE-2019-212
  • [12] Dziubak T, Dziubak SD. experimental study of filtration materials used in the car air intake. Materials. 2020;13(16): 3498. https://doi.org/10.3390/ma13163498
  • [13] Fujiwara F, Rebagliati RJ, Dawidowski L. Gómez D, Polla G, Pereyra V et al. Spatial and chemical patterns of size fractionated road dust collected in a megacitiy. Atmos Environ. 2011;45:1497-1505. https://doi.org/10.1016/j.atmosenv.2010.12.053
  • [14] Fussell JC, Franklin M, Green MD, Gustafsson M, Harrison RM, Hicks W et al. A review of road traffic-derived non-exhaust particles: emissions, physicochemical characteristics, health risks, and mitigation measures. Environ Sci Technol. 2022;56:6813-6835. https://doi.org/10.1021/acs.est.2c01072
  • [15] Heikkilä P, Sipilä A, Peltola M, Harlin A. Electrospun PA-66 coating on textile surfaces. Text Res J. 2007;77(11):64-870. https://doi.org/10.1177/0040517507078241
  • [16] Jaroszczyk T, Pardue BA, Heckel SP, Kallsen KJ. Engine air cleaner filtration performance - theoretical and experimental background of testing. Proceedings of the AFS Fourteenth Annual Technical Conference and Exposition, Tampa, 1 May 2001. Session 16.
  • [17] Jaroszczyk T, Petrik S, Donahue K. Recent development in heavy duty engine air filtration and the role of nanofiber filter media. Journal of KONES - Powertrain and Transport. 2009;16(4):207-216.
  • [18] Jiang D, Zhang W, Liu J, Geng W, Ren Z. Filtration and regeneration behavior of polytetrafluoroethylene membrane for dusty gas treatment. Korean J Chem Eng. 2008;25:744-753. https://doi.org/10.1007/s11814-008-0122-2
  • [19] Jung U, Choi S-S. Classification and characterization of tire-road wear particles in road dust by density. Polymers. 2022; 14:1005. https://doi.org/10.3390/polym14051005
  • [20] Kanageswari SV, Tabil LG, Sokhansanj S. Dust and particulate matter generated during handling and pelletization of herbaceous biomass: a review. Energies. 2022;15:2634. https://doi.org/10.3390/en15072634
  • [21] Karczewski M. Evaluation of the diesel engine feed by unified battlefield fuel F-34/F-35 mixed with biocomponents. Combustion Engines. 2019;178(3):240-246. https://doi.org/10.19206/CE-2019-342
  • [22] Kreider ML, Panko JM, McAtee BL, Sweet LI, Finley BL. Physical and chemical characterization of tire-related particles: comparison of particles generated using different methodologies. Sci Total Environ. 2010;408:652-659. https://doi.org/10.1016/j.scitotenv.2009.10.016
  • [23] Leung WW-F, Curie Hau CW-Y, Choy H-F. Microfiber-nanofiber composite filter for high-efficiency and low pressure drop under nano-aerosol loading. Sep Purif Technol. 2018; 206:26-38. https://doi.org/10.1016/j.seppur.2018.05.033
  • [24] Li B, Cao R, He H D, Peng Z R, Qin H, Qin Q. Three dimensional diffusion patterns of traffic related air pollutants on the roadside based on unmanned aerial vehicles monitoring. Build Environ 2022;219:109159. https://doi.org/10.1016/j.buildenv.2022.109159
  • [25] Lippi M, Riva L, Caruso M, Punta C. Cellulose for the production of air-filtering systems: a critical review. Materials. 2022;15:976. https://doi.org/10.3390/ma15030976
  • [26] Liu X, Shen H, Nie X. Study on the filtration performance of the baghouse filters for ultra-low emission as a function of filter pore size and fiber diameter. Int J Env Res Pub He. 2019;16(2):247. https://doi.org/10.3390/ijerph16020247
  • [27] Long J, Tang M, Liang Y, Hu J. Preparation of fibrillated cellulose nanofiber from lyocell fiber and its application in air filtration. Materials. 2018;11(8):1313. https://doi.org/10.3390/ma11081313
  • [28] Long J, Tang M, Sun Z, Liang Y, Hu J. Dust loading performance of a novel submicro-fiber composite filter medium for engine. Materials. 2018;11:2038. https://doi.org/10.3390/ma11102038
  • [29] Melzer HH, Brox W. Ansauggerauschdampfer und Luftfilter für BMW 524 td. MTZ. 1984;45:223-227.
  • [30] Michalski J, Woś P. The effect of cylinder liner surface topography on abrasive wear of piston-cylinder assembly in combustion engine. Wear. 2011;271:582-589. https://doi.org/10.1016/j.wear.2010.05.006
  • [31] Muschelknautz U. Design criteria for multicyclones in a limited space. Powder Technol. 2019;357:2-20. https://doi.org/10.1016/j.powtec.2019.08.057
  • [32] Nowak B, Bonora M, Winnik M, Gac J. An effect of fibrous filters modification with MTMS aerogel structure on oil mist filtration dynamics. J Aerosol Sci. 2023;170:106147. https://doi.org/10.1016/j.jaerosci.2023.106147
  • [33] Nyirenda G, Tamaldin N, Zakaria MH. The impact of bio-diesel blend variation contamination to engine friction, wear, performance and emission . IJAME 2021;18(1):8592 8600. https://doi.org/10.15282/ijame.18.1.2021.18.0653
  • [34] Oszczypała M, Ziółkowski J, Małachowski J. Semi-Markov approach for reliability modelling of light utility vehicles. Eksploat Niezawodn. 2023;25(2):161859. http://doi.org/10.17531/ein/161859
  • [35] Owens LP, Hubbe MA. Performance factors for filtration of air using cellulosic fiber-based media: a review. BioResources. 2023;18(1):2440-2519. http://doi.org/10.15376/biores.18.1.Owens
  • [36] Panko J, Kreider M, Unice K. Review of tire wear emissions. Non-exhaust emissions. Chapter 7 - Review of tire wear emissions: a review of tire emission measurement studies: identification of gaps and future needs. 2018;147-160. http://doi.org/10.1016/b978-0-12-811770-5.00007-8
  • [37] Rieger M, Hettkamp P, Löhl T, Madeira PMP. Efficient engine air filter for tight installation spaces. ATZ Heavy Duty Worldw. 2019;12(2):56-59. https://doi.org/10.1007/s41321-019-0023-9
  • [38] Schaeffer JW, Olson LM. Air filtration media for transportation applications. Filtr Sep. 1998;35(2):124-129. https://doi.org/10.1016/S0015-1882(97)80292-3
  • [39] Smialek JL, Archer FA, Garlick RG. Turbine airfoil degradation in the Persian GulfWar. JOM-J Min Met Mat S. 1994;46(12):39-41. https://doi.org/10.1007/BF03222663
  • [40] Summers CE. The physical characteristics of road and field dust. SAE Technical Paper 250010. 1925. https://doi.org/10.4271/250010
  • [41] Świderski A, Borucka A, Jacyna-Gołda I, Szczepański E. Wear of brake system components in various operating conditions of vehicle in the transport company. Eksploat Niezawodn. 2019;21(1):1-9. https://doi.org/10.17531/ein.2019.1.1
  • [42] Thomas J, West B, Huff S. Effect of air filter condition on diesel vehicle fuel economy. SAE Technical Paper 2013-01-0311. 2013. https://doi.org/10.4271/2013-01-0311
  • [43] Thorpe A, Harrison RH. Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci Total Environ. 2008;400:270-282. https://doi.org/10.1016/j.scitotenv.2008.06.007
  • [44] Tian X, Ou Q, Liu J, Liang Y, Pui DYH. Particle loading characteristics of a two-stage filtration system. Sep Purif Technol. 2019;215:351-359. https://doi.org/10.1016/j.seppur.2019.01.033
  • [45] Treuhaft MB. The use of radioactive tracer technology to measure engine ring wear in response to dust ingestion. SAE Technical Paper 930019. 1993. https://doi.org/10.4271/930019
  • [46] Wang J, Kim SC, Pui DYH. Figure of merit of composite filters with micrometer and nanometer fibers. Aerosol Sci Tech. 2008;42:722-728. https://doi.org/10.1080/02786820802249133
  • [47] Worek J, Badura X, Białas A, Chwiej J, Kawon K, Styszko K. Pollution from transport: detection of tyre particles in environmental samples. Energies. 2022;15:2816. https://doi.org/10.3390/en15082816
  • [48] Wróblewski P. Analysis of torque waveforms in two cylinder engines for ultralight aircraft propulsion operating on 0W 8 and 0W 16 oils at high thermal loads using the diamond like carbon composite coating . SAE Int J Engines 2022; 15: 129 146. https://doi.org/10.4271/0315010005
  • [49] Xu H, Jin W, Luo J, Wang F, Zhu H, Liu G et al. Study of the PTFE multi-tube high efficiency air filter for indoor air purification. Process Saf Environ. 2021;151:28-38. https://doi.org/10.1016/j.psep.2021.05.007
  • [50] Young JM, Kelly TM, Vance L. Determination of size fractions and concentrations of airborne particulate matter generated from construction and demolition waste processing facilities. Air Qual Atmos Hlth. 2008;1:91-100. https://doi.org/10.1007/s11869-008-0015-x
  • [51] Ziółkowski J, Lęgas A, Szymczyk E, Małachowski J, Oszczypała M, Szkutnik-Rogoż J. Optimization of the delivery time within the distribution network, taking into account fuel consumption and the level of carbon dioxide emissions into the atmosphere. Energies. 2022;15(14):5198. https://doi.org/10.3390/en15145198
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3f7ee4d0-0e54-4a69-9462-5918fab2fd40
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.