Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | Nr 5 | 91--99
Tytuł artykułu

Analiza założeń konstrukcyjnych sezonowego zasobnika energii słonecznej

Warianty tytułu
EN
Analysis of architecture assumptions for seasonal thermal energy storage
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono analizę teoretyczną sezonowego zasobnika energii cieplnej pozyskanej ze Słońca (ang. Seasonal Thermal Energy Storage—STES) do pokrywania zapotrzebowania na ciepło zespołu czterech budynków. Zasobnik umieszczony jest w ziemi i podłączony do paneli słonecznych oraz sieci ciepłowniczej łączącej poszczególne bu-dynki. Analizie poddano kilka wybranych przypadków w celu określenia możliwie optymalnych parametrów konstrukcyj-nych całego układu STES (objętość zasobnika i powierzchnia kolektorów słonecznych). W wyniku przeprowadzonych analiz wynika, iż zastosowanie STES-a pozwala zaspokoić potrzeby grzewcze w zakresie 22–100% w zależności od zastosowanego rozwiązania konstrukcyjnego.
EN
This paper presents a theoretical analysis of the seasonal storage of heat gained from the sun (called Seasonal Thermal Energy StorageSTES) to cover the heat demand team of four buildings. The tank is placed in the ground and connected to the solar panels and heat network connecting the various buildings. We analyzed a number of selected cases in order to determine the possible optimal design parameters of the entire system STES (tank volume and collector area). The analyzes show that the use of STES can satisfy the heating needs in 22-100% depending on the applied design solution.
Wydawca

Czasopismo
Rocznik
Tom
Strony
91--99
Opis fizyczny
Bibliogr. 45 poz., rys.
Twórcy
autor
autor
Bibliografia
  • [1] Bartela L., Kotowicz J. : Influence of membrane CO2 separation process on the effectiveness of supercritical combined heat and power plant. Rynek Energii 2011, no 6 (97), 12–19.
  • [2] Bozorgmehri, S., Hamedi M. : Modeling and optimization of anode-supported solid oxide fuel cells on cell parameters via artificial neural network and genetic algorithm. Fuel Cells, 12(1), 11–23, 2012.
  • [3] Budzianowski W.: Sustainable biogas energy in Poland: Prospects and challenges. Renewable and Sustainable Energy Reviews, 16(1), 342–349, 2012.
  • [4] Chabane F., Moummi N. , Benramache S. : Experimental analysis on thermal performance of a solar air collector with longitudinal fins in a region of Biskra, Algeria, Journal of Power Technologies, 93(1), 52–58, 2013.
  • [5] Chaichana K., Patcharavorachot Y., Chutichai B., Saebea D., Assabumrungrat S., Arpornwichanop A.: Neural network hybrid model of a direct internal reforming solid oxide fuel cell. International Journal of Hydrogen Energy, 37(3), 2498–2508, 2012.
  • [6] Çomakl K., Çakr U., Kaya M., Bakirci K.: The relation of collector and storage tank size in solar heating systems. Energy Conversion and Management, 63, 112–117, 2012.
  • [7] Cuypers R., Maraz, N. Eversdijk J., Finck C., Henquet E., Oversloot H., v. Spijker H. , de Geus A.: Development of a seasonal thermochemical storage system. Energy Procedia, 30, 207–214, 2012.
  • [8] de Guadalfajara, M., Lozano M. A., Serra L. M.: Evaluation of the potential of large solar heating plants in Spain. Energy Procedia, 30, 839–848, 2012.
  • [9] De Lorenzo, G.P. Fragiacomo: Electrical and electrical-thermal power plants with molten carbonate fuel cell/gas turbine-integrated systems. International Journal of Energy Research, 36(2), 153–165, 2012.
  • [10] Diersch H.-J., Bauer D., Heidemann W., Rühaak W., Schätzl P.: Finite element modeling of borehole heat exchanger systems: Part 1. fundamentals. Computers & Geosciences, 37(8), 1122–1135, 2011.
  • [11] Diersch H.-J., Bauer D., Heidemann W., Rühaak W., Schätzl P.: Finite element modeling of borehole heat exchanger systems: Part 2. numerical simulation. Computers & Geosciences, 37(8), 1136–1147, 2011.
  • [12] Discepoli G., Cinti G., Desideri U., Penchini D., Proietti S.: Carbon capture with molten carbonate fuel cells: Experimental tests and fuel cell performance assessment. International Journal of Greenhouse Gas Control, 9, 372–384, 2012.
  • [13] Fan J., Furbo S., Andersen E., Chen Z., Perers B., Dannemand M.: Thermal behavior of a heat exchanger module for seasonal heat storage. Energy Procedia, 30, 244–254, 2012.
  • [14] Hellström G., Larson S.: Seasonal thermal energy storage–the hydrock concept. Bulletin of Engineering Geology and the Environment, 60(2), 145–156, 2001.
  • [15] Inalli M.: Design parameters for a solar heating system with an underground cylindrical tank. Energy, 23(12), 1015–1027, 1998.
  • [16] Inalli M., Unsal M., Tanyildizi V.: A computational model of a domestic solar heating system with underground spherical thermal storage. Energy, 22(12), 1163–1172, 1997.
  • [17] Janusz-Szymańska K.: Economic efficiency of an IGCC system integreted with CCS installation. Rynek Energii 2012, no 5(102), 24–30.
  • [18] Jeong H., Cho S., Kim D., Pyun H., Ha D., Han C., Kang M., Jeong M., Lee S.: A heuristic method of variable selection based on principal component analysis and factor analysis for monitoring in a 300 kW MCFC power plant. International Journal of Hydrogen Energy, 37(15), 11,394–11,400, 2012.
  • [19] Kerskes H., Mette B. , Bertsch F., Asenbeck S., Drück H.: Chemical energy storage using reversible solid/gas-reactions (CWS)–results of the research project. Energy Procedia, 30, 294–304, 2012.
  • [20] Kim J., Lee, Y. Yoon W. S., Jeon J. S., Koo M.-H., Keehm Y.: Numerical modeling of aquifer thermal energy storage system. Energy, 35(12), 4955–4965, 2010.
  • [21] Lindenberger D., Bruckner T., Groscurth H.-M., Kümmel R.: Optimization of solar district heating systems: seasonal storage, heat pumps, and cogeneration. Energy, 25(7), 591–608, 2000.
  • [22] Mangold D.: Seasonal storage – a german success story. Sun & Wind Energy, 1, 48–58, 2007.
  • [23] Marzooghi H., Raoofat M., Dehghani M., Elahi G.: Dynamic modeling of solid oxide fuel cell stack based on local linear model tree algorithm. International Journal of Hydrogen Energy, 37(5), 4367–4376, 2012.
  • [24] Mette B., Kerskes H., Drück H.: Concepts of long-term thermochemical energy storage for solar thermal applications–selected examples. Energy Procedia, 30, 321–330, 2012.
  • [25] Miche B., Mazet N., Mauran S., Stitou D., Xu J.: Thermochemical process for seasonal storage of solar energy: Characterization and modeling of a high density reactive bed. Energy, 2012.
  • [26] Nordell B., Hellström G.: High temperature solar heated seasonal storage system for low temperature heating of buildings. Solar Energy, 69(6), 511–523, 2000.
  • [27] Pahud D.: Central solar heating plants with seasonal duct storage and short-term water storage: design guidelines obtained by dynamic system simulations. Solar Energy, 69(6), 495–509, 2000.
  • [28] Paksoy H., O. Andersson, S. Abaci, H. Evliya, and B. Turgut, Heating and cooling of a hospital using solar energy coupled with seasonal thermal energy storage in an aquifer, Renewable Energy, 19(1), 117–122, 2000.
  • [29] Pianko-Oprych P., Jaworski Z.: Numerical modelling of the micro-tubular solid oxide fuel cell stacks. Przemysl Chemiczny, 91(9), 1813–1815, 2012.
  • [30] Pinel P., Cruickshank C., Beausoleil-Morrison I., Wills A.: A review of available methods for seasonal storage of solar thermal energy in residential applications. Renewable and Sustainable Energy Reviews, 15(7), 3341–3359, 2011.
  • [31] Reuss M., Beck M., Müller J.: Design of a seasonal thermal energy storage in the ground. Solar Energy, 59(4), 247–257, 1997.
  • [32] Schmidt T., Mangold D.: New steps in seasonal thermal energy storage in germany, Tech. rep., Solites - Steinbeis Research Institute for Solar and Sustainable Thermal Energy Systems, 2006.
  • [33] Schmidt T., Nussbicker J.: Monitoring results from german central solar heating plants with seasonal storage, in Solar World Congress, ISES, pp. 1–6, 2005.
  • [34] Simons A., Firth S. K.: Life-cycle assessment of a 100% solar fraction thermal supply to a european apartment building using water-based sensible heat storage. Energy and Buildings, 43(6), 1231–1240, 2011.
  • [35] Sobolewski A., Bartela L., Skorek-Osikowska A., Iluk T.: Comparison of the economic efficiency of CHP plants integrated with gazela generator. Rynek Energii 2012, no 5(102), 31–37.
  • [36] Sweet M., and J. McLeskey: Numerical simulation of underground seasonal solar thermal energy storage (sstes) for a single family dwelling using trnsys, Solar Energy, 2011.
  • [37] Sweet M. L., McLeskey J. T. Jr: Numerical simulation of underground seasonal solar thermal energy storage (SSTES) for a single family dwelling using TRNSYS. Solar Energy, 86(1), 289–300, 2012.
  • [38] Tveit T.-M., Savola T., Gebremedhin A., Fogelholm C.-J.: Multi-period minlp model for optimising operation and structural changes to CHP plants in district heating networks with long-term thermal storage: Energy Conversion and Management, 50(3), 639–647, 2009.
  • [39] Ucar A., Inalli M.: Thermal and economic comparisons of solar heating systems with seasonal storage used in building heating. Renewable Energy, 33(12), 2532–2539, 2008.
  • [40] Yumrutaş R., Ünsal M.: Analysis of solar aided heat pump systems with seasonal thermal energy storage in surface tanks. Energy, 25(12), 1231–1243, 2000.
  • [41] Yumrutaş R., Ünsal M.: A computational model of a heat pump system with a hemispherical surface tank as the ground heat source. Energy, 25(4), 371–388, 2000.
  • [42] Yumrutaş R., Ünsal M.: Modeling of a space cooling system with underground storage. Applied Thermal Engineering, 25(2), 227–239, 2005.
  • [43] Yumrutaş R., Kanoğlu M., Bolatturk A., Bedir M. Ş.: Computational model for a ground coupled space cooling system with an underground energy storage tank. Energy and Buildings, 37(4), 353–360, 2005.
  • [44] Zhang H.-F., Ge X.-S., Ye H.: Modeling of a space heating and cooling system with seasonal energy storage. Energy, 32(1), 51–58, 2007.
  • [45] Zhao J., Chen Y., Lu S.: Simulation study on operating modes of seasonal underground thermal energy storage, in Proceedings of ISES World Congress 2007 (Vol. I–Vol. V), pp. 2119–2122, Springer, 2009.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3f2d62c8-f871-47f5-b1b8-19450655142c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.