Czasopismo
2024
|
Vol. 42, No. 2
|
125--142
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Concrete structures are extremely vulnerable to fire damage, which greatly undermines their structural strength and durability. Recently, there has been a concerted effort to develop sustainable concrete materials. Geopolymer concrete (GPC) is a promising substitute for conventional cement concrete due to its use of recycled materials. However, despite the positive effect it has on the environment, GPC is susceptible to heat, which can cause it to deteriorate over time. In response to this issue, the use of carbon-fiber reinforced polymer (CFRP) has been proposed as a means of strengthening heat-damaged GPC. This study aims to investigate the effectiveness of CFRP-strengthened heat-damaged metakaolin-based GPC made from reclaimed asphalt pavement (RAP) aggregate. Three concrete mixtures were used, in which the conventional aggregate was substituted with RAP aggregate at 0%, 25%, and 50% replacement levels. In addition, the concrete cylinders were tested under ambient conditions and subjected to 300◦C. The results indicated that the substitution with 25% RAP aggregate significantly reduced compressive strength by 39.1%, while 50% replacement resulted in a 66.8% decrease compared with the control mixture. The use of CFRP sheets to strengthen heat-damaged GPC specimens was proven to be effective in increasing the resistance of the heated specimens and restoring the compressive strength and confinement energy to their original state before reaching the ultimate failure point. The use of CFRP sheets significantly increased compressive strengths, with increases ranging from 87.7% to 368.8% at 26◦C and 58.8% to 153.9% at 300◦C, compared with each mixture’s unstrengthened control specimen.
Czasopismo
Rocznik
Tom
Strony
125--142
Opis fizyczny
Bibliogr. 70poz., rys., tab.
Twórcy
autor
- Department of Civil Engineering, College of Engineering, King Saud University Riyadh, Saudi Arabia, aabadel@ksu.edu.sa
Bibliografia
- [1] Sarker P, Kelly S, Yao Z. Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Mater Des. 2014;29:584–592. doi: 10.1016/j.matdes.2014.06.059
- [2] Abdellatief M, Elrahman MA, Abadel AA, Wasim M, Tahwia A. Ultra-high performance concrete versus ultrahigh performance geopolymer concrete: Mechanical performance, microstructure, and ecological assessment. J Build Eng. 2023;79:107835. doi: 10.1016/J.JOBE.202 3.107835
- [3] Pradhan P, Dwibedy S, Pradhan M, Panda S, Panigrahi SK. Durability characteristics of geopolymer concrete – Progress and perspectives. J Build Eng. 2022;59:105100. doi: 10.1016/J.JOBE.2022.105100
- [4] Wardhono A, Law DW, Strano A. The strength of alkali-activated slag/fly ash mortar blends at ambient temperature. Procedia Eng. 2015;125:650–656. doi: 10.1016/j.proeng.2015.11.095
- [5] Alrshoudi F, Abbas H, Abadel A, Albidah A, Altheeb A, Al-Salloum Y. Compression behavior and modeling of FRP-confined high strength geopolymer concrete. Constr Build Mater. 2021;283:122759. doi: 10.1016/J.CONBUILDMAT.2021.122759
- [6] Turner LK, Collins FG. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr Build Mater. 2013;43:125–130. doi: 10.1016/J.CONBUILDMAT.2013.01.023
- [7] Wasim M, Abadel A, Abu Bakar BH, Alshaikh IMH. Future directions for the application of zero carbon concrete in civil engineering – A review. Case Stud Constr Mater. 2022;17:e01318. doi: 10.1016/J.CSCM.2022.E01318
- [8] Qaidi S, Al-Kamaki YSS, Al-Mahaidi R, Mohammed AS, Ahmed HU, Zaid O, Althoey F, Ahmad J, Isleem HF, Bennetts I. Investigation of the effectiveness of CFRP strengthening of concrete made with recycled waste PET fine plastic aggregate. PLoS One. 2022;17:1– 27. doi: 10.1371/journal.pone.0269664
- [9] Alsaif A, Albidah A, Abadel A, Abbas H, Almusallam T, Al-Salloum Y. Behavior of ternary blended cementitious rubberized mixes reinforced with recycled tires steel fibers under different types of impact loads. Structures. 2022;45:2292–2305. doi: 10.1016/J.ISTRUC.202 2.10.049
- [10] Singh S, Ransinchung GDRN, Monu K, Kumar P. Laboratory investigation of RAP aggregates for dry lean concrete mixes. Constr Build Mater. 2018;166:808–816. doi: 10.1016/J.CONBUILDMAT.2018.01.131
- [11] Brand AS, Roesler JR. Bonding in cementitious materials with asphalt-coated particles: Part I – The interfacial transition zone. Constr Build Mater. 2017;130:171–181. doi: 10.1016/J.CONBUILDMAT.2016.10.019
- [12] Widayanti A, Soemitro Ria AA, Ekaputri JJ, Suprayitno H. Characterization of Reclaimed Asphalt Pavement (RAP) as a road pavement material (National Road Waru, Sidoarjo). MATEC Web Conf. 2018;181:05001. doi: 10.1051/MATECCONF/201818105001
- [13] Federal Highway Administration. User Guidelines for Waste and By-product Materials in Pavement Construction. Washington, DC: FHWA; 2008.
- [14] Tarsi G, Tataranni P, Sangiorgi C. The challenges of using reclaimed asphalt pavement for new asphalt mixtures: A review. Materials (Basel). 2020;13:4052. doi: 10.3390/MA13184052
- [15] Albidah AS. Influence of reclaimed asphalt pavement aggregate on the performance of metakaolin-based geopolymer concrete at ambient and elevated temperatures. Constr Build Mater. 2023;402:132945. doi: 10.1 016/J.CONBUILDMAT.2023.132945
- [16] Albidah A, Altheeb A, Alrshoudi F, Abadel A, Abbas H, Al-Salloum Y. Bond performance of GFRP and steel rebars embedded in metakaolin based geopolymer concrete. Structures. 2020;27:1582–1593. doi: 10.1016/J.ISTRUC.2020.07.048
- [17] Mukhtar F, Deifalla A. Shear strength of FRP reinforced deep concrete beams without stirrups: Test database and a critical shear crack-based model. Compos Struct. 2023;307:116636. doi: 10.1016/j.compstruct.202 2.116636
- [18] Elsanadedy HM, Al-Salloum YA, Almusallam TH, Alshenawy AO, Abbas H. Experimental and numerical study on FRP-upgraded RC beams with large rectangular web openings in shear zones. Constr Build Mater. 2019;194:322–343. doi: 10.1016/j.conbuildmat.2018.1 0.238
- [19] El-Sayed TA, Shaheen YB, AbouBakr MM, Abdelnaby RM. Behavior of ferrocement water pipes as an alternative solution for steel water pipes. Case Stud Constr Mater. 2022;18:e01806. doi: 10.1016/j.cscm.202 2.e01806
- [20] Mariam Boban J, Susan John A. A review on the use of ferrocement with stainless steel mesh as a rehabilitation technique. Mater Today Proc. 2021;42:1100–1105. doi: 10.1016/j.matpr.2020.12.490
- [21] Yang X, Zhang B, Zhou A, Wei H, Liu T. Axial compressive behaviour of corroded steel reinforced concrete columns retrofitted with a basalt fibre reinforced polymer-ultrahigh performance concrete jacket. Compos Struct. 2023;304:116447. doi: 10.1016/j.compstruct.202 2.116447
- [22] Xiao S-H, Lin J-X, Li L-J, Guo Y-C, Zeng J-J, Xie Z-H, Wei F-F, Li M. Experimental study on flexural behavior of concrete beam reinforced with GFRP and steel-fiber composite bars. J Build Eng. 2021;43:103087. doi: 10.1 016/j.jobe.2021.103087
- [23] Alkhateeb MY, Hejazi F. Reinforced concrete beams externally strengthened by CFRP rods with steel plate, anchorage bolts, and concrete jacketing. Structures. 2022;46:1994–2013. doi: 10.1016/j.istruc.2022.11.024
- [24] Jin L, Jiang X, Xia H, Chen F, Du X. Size effect in shear failure of lightweight concrete beams wrapped with CFRP without stirrups: Influence of fiber ratio. Compos Part B Eng. 2020;199:108257. doi: 10.1016/j.compositesb.2020.108257
- [25] Rùžek V, Dostayeva AM, Walter J, Grab T, Korniejenko K. Carbon fiber-reinforced geopolymer composites: A review. Fibers. 2023;11:17. doi: 10.3390/FIB11020017
- [26] Matsui K. Effects of curing conditions and test temperatures on the strength of adhesive-bonded joints. Int J Adhes Adhes. 1990;10:277–284. doi: 10.1016/0143-7496(90)90046-Z
- [27] Nguyen TC, Bai Y, Zhao XL, Al-Mahaidi R. Curing effects on steel/CFRP double strap joints under combined mechanical load, temperature and humidity. Constr Build Mater. 2013;40:899–907. doi: 10.1016/J.CONBUILDMAT.2012.11.035
- [28] Hollaway L, Teng JG, M. Strengthening and rehabilitation of civil infrastructures using fibre-reinforced polymer (FRP) composites. Woodhead Publishing, Elsevier, 2008.
- [29] Wang JJ, Zhang SS, Nie XF, Yu T. Compressive behavior of FRP-confined ultra-high performance concrete (UHPC) and ultra-high performance fiber reinforced concrete (UHPFRC). Compos Struct. 2023;312:116879. doi: 10.1016/j.compstruct.2023.116879
- [30] Zeng X, Deng K, Liang H, Xu R, Zhao C, Cui B. Uniaxial behavior and constitutive model of reinforcement confined coarse aggregate UHPC. Eng Struct. 2020;207:110261. doi: 10.1016/j.engstruct.2020.110261
- [31] Abadel AA, Alharbi YR. Confinement effectiveness of CFRP strengthened ultra-high performance concrete cylinders exposed to elevated temperatures. Mater Sci. 2021;39:478–490. doi: 10.2478/MSP-2021-0040
- [32] Al-Bayati G, Kalfat R, Al-Mahaidi R, Hashemi J. Experimental study on crack propagation of CFRP- strengthened RC beams subjected to torsion. Aust J Struct Eng. 2018;19:279–297. doi: 10.1080/13287982.2018.1523293
- [33] Raouf S, Ibraheem O, Tais A. Confinement effectiveness of CFRP strengthened concrete cylinders subjected to high temperatures. Adv Concr Constr. 2020;9:7. doi: 10.12989/acc.2020.9.6.529
- [34] Alzeebaree R, Xevik A, Mohammedameen A, Ni° A, Eren M, Xan G. Mechanical performance of FRP- confined geopolymer concrete under seawater attack. Adv Struct Eng. 23 (2019). doi: 10.1177/1369433219886964
- [35] Chen GM, He YH, Jiang T, Lin CJ. Behavior of CFRP- confined recycled aggregate concrete under axial compression. Constr Build Mater. 2016;111:85–97.
- [36] McSwain AC, Berube KA, Cusatis G, Landis EN. Confinement effects on fiber pullout forces for ultra- high-performance concrete. Cem Concr Compos. 2018; 91:53–58. doi: 10.1016/j.cemconcomp.2018.04.011
- [37] Yazdanbakhsh A, Bank LC. A critical review of research on reuse of mechanically recycled FRP production and end-of-life waste for construction. Polymers (Basel). 2014;6:1810–1826.
- [38] Gao C, Huang L, Yan L, Kasal B, Li W. Behavior of glass and carbon FRP tube encased recycled aggregate concrete with recycled clay brick aggregate. Compos Struct. 2016;155:245–254.
- [39] Mastali M, Dalvand A. The impact resistance and mechanical properties of self-compacting concrete reinforced with recycled CFRP pieces. Compos Part B Eng. 2016;92:360–376.
- [40] Makhlouf M, Torsional behavior of RC beams with opening using (CFRP – GFRP – Steel) stirrups. Adv Res. 2016;8:1–10. doi: 10.9734/AIR/2016/30247
- [41] Elwan SK. Torsion strengthening of RC beams using CFRP (parametric study). KSCE J Civ Eng. 2017;21:1273–1281. doi: 10.1007/s12205-016-0156-7
- [42] Aules WA, Saeed YM, Al-Azzawi H, Rad FN. Experimental investigation on short concrete columns laterally strengthened with ferrocement and CFRP. Case Stud Constr Mater. 2022;16:e01130. doi: 10.1016/j.cscm.2022.e01130
- [43] Wang G, Wei Y, Shen C, Huang Z, Zheng K. Compression performance of FRP-steel composite tube-confined ultrahigh-performance concrete (UHPC) columns. Thin-Walled Struct. 2023;192:111152. doi: 10.1016/j.tws.2023.111152
- [44] Zhang H, Wu J, Jin F, Zhang C. Effect of corroded stirrups on shear behavior of reinforced recycled aggregate concrete beams strengthened with carbon fiber- reinforced polymer. Compos Part B Eng. 2019;161:357– 368. doi: 10.1016/j.compositesb.2018.12.074
- [45] Ma K, Cao X, Song J, Meng X, Qiao L. Axial compressive behavior of concrete-filled steel tubes with GFRP-confined UHPC cores. J Constr Steel Res. 2023;200:107632. doi: 10.1016/j.jcsr.2022.107632
- [46] Li W, Lu Y, Wang P, Jiang Y, Wang L, Shi T, Zheng K. Comparative study of compressive behavior of confined NSC and UHPC/UHPFRC cylinders externally wrapped with CFRP jacket. Eng Struct. 2023;292:116513. doi: 10.1016/j.engstruct.2023.116513
- [47] Nanni A. Flexural behavior and design of RC Members using FRP reinforcement. J Struct Eng. 1993;119. doi: 10.1061/(ASCE)0733-9445(1993)119:11(3344)
- [48] Hung C-C, Hsiao H-J, Shao Y, Yen C-H. A comparative study on the seismic performance of RC beam-column joints retrofitted by ECC, FRP, and concrete jacketing methods. J Build Eng. 2023;64:105691. doi: 10.1016/j.jobe.2022.105691
- [49] Xiang D, Hou Z, Liu Y, Li Y, Xu X. Flexural behavior and crack width prediction of UHPC slabs reinforced with FRP bars. J Build Eng. 2023;77:107548. doi: 10.1016/j.jobe.2023.107548
- [50] Borrie D, Al-saadi S, Zhao XL, Singh Raman RK, Bai Y. Bonded CFRP/steel systems, remedies of bond degradation and behaviour of CFRP repaired steel: An overview. Polymers (Basel). 2021;13:1533. doi: 10.3390/POLYM13091533
- [51] Hollaway LC, Cadei J. Progress in the technique of upgrading metallic structures with advanced polymer composites. Prog Struct Eng Mater. 2002;4:131–148. doi: 10.1002/PSE.112
- [52] Abadel AA. Rehabilitation of post-heated rectangular reinforced concrete columns using different strengthening configuration. Struct Concr. 2023. doi: 10.1002/SU CO.202300521
- [53] Abadel A, Abbas H, Albidah A, Almusallam T, Al- Salloum Y. Effectiveness of GFRP strengthening of normal and high strength fiber reinforced concrete after exposure to heating and cooling. Eng Sci Technol an Int J. 2022;36:101147. doi: 10.1016/J.JESTCH.2022.1011 47
- [54] Abadel AA, Alharbi YR. Confinement effectiveness of CFRP strengthened ultra high performance concrete cylinders exposed to elevated temperatures. Mater Sci- Pol. 2022. doi: 10.2478/msp-2021-0040
- [55] ASTM D3039/D3039M -08. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. American Society for Testing and Materials: West Conshohocken, PA; 2008 (n.d.)
- [56] Alghannam M, Albidah A, Abbas H, Al-Salloum Y. Influence of critical parameters of mix proportions on properties of MK-based geopolymer concrete. Arab J Sci Eng. 2021;46:4399–4408. doi: 10.1007/S13369-020-04970-0/FIGURES/10
- [57] A.-C. ASTM C39/C39M-17. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken; 2017.
- [58] Albidah A, Alqarni AS, Abbas H, Almusallam T, Al- Salloum Y. Behavior of metakaolin-based geopolymer concrete at ambient and elevated temperatures. Constr Build Mater. 2022;317:125910. doi: 10.1016/J.CONBUILDMAT.2021.125910
- [59] Thomas RJ, Fellows AJ, Sorensen AD. Durability analysis of recycled asphalt pavement as partial coarse aggregate replacement in a high-strength concrete mixture. J Mater Civ Eng. 2018;30:04018061. doi: 10.1061/(ASCE)MT.1943-5533.0002262
- [60] Khodair Y, Raza M. Sustainable self-consolidating concrete using recycled asphalt pavement and high volume of supplementary cementitious materials. Constr Build Mater. 2017;131:245–253. doi: 10.1016/J.CONBUILD MAT.2016.11.044
- [61] Hassan KE, Brooks JJ, Erdman M. The use of reclaimed asphalt pavement (RAP) aggregates in concrete. Waste Manag Ser. 2000;1:121–128. doi: 10.1016/S0713-2743(00)80024-0
- [62] Erdem S, Blankson MA. Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate. J Hazard Mater. 2014;264:403–410. doi: 10.1016/J.JHAZMAT.2013.11.040
- [63] Kong DLY, Sanjayan JG. Damage behavior of geopolymer composites exposed to elevated temperatures. Cem Concr Compos. 2008;30:986–991. doi: 10.1016/J.CE MCONCOMP.2008.08.001
- [64] Zhang HY, Kodur V, Qi SL, Cao L, Wu B. Development of metakaolin–fly ash based geopolymers for fire resistance applications. Constr Build Mater. 2014;55:38–45. doi: 10.1016/J.CONBUILDMAT.2014.01.040
- [65] Vora PR, Dave UV. Parametric studies on compressive strength of geopolymer concrete. Procedia Eng. 2013;51:210–219. doi: 10.1016/J.PROENG.2013.01.030
- [66] Sarkar M, Dana K. Partial replacement of metakaolin with red ceramic waste in geopolymer. Ceram Int. 2021;47:3473–3483. doi: 10.1016/J.CERAMINT.2020.09.191
- [67] Aly AM, El-Feky MS, Kohail M, Nasr ESAR. Performance of geopolymer concrete containing recycled rubber. Constr Build Mater. 2019;207:136–144. doi: 10.1016/J.CONBUILDMAT.2019.02.121
- [68] Bisby LA, Chen JF, Li SQ, Stratford TJ, Cueva N, Crossling K. Strengthening fire-damaged concrete by confinement with fibre-reinforced polymer wraps. Eng Struct. 2011;33:3381–3391. doi: 10.1016/J.ENGSTR UCT.2011.07.002
- [69] Abadel AA, Masmoudi R, Iqbal Khan M. Axial behavior of square and circular concrete columns confined with CFRP sheets under elevated temperatures: Comparison with welded-wire mesh steel confinement. Structures. 2022;45:126–144. doi: 10.1016/J.ISTRUC.2022.09.026
- [70] Khaloo AR, Dehestani M, Rahmatabadi P. Mechanical properties of concrete containing a high volume of tire–rubber particles. Waste Manag. 2008;28:2472– 2482. doi: 10.1016/J.WASMAN.2008.01.015
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3f2aa503-c662-4417-8a60-33706c1ab9c0