Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 38, no. 2 | 251--261
Tytuł artykułu

Detection of valvular heart diseases using impedance cardiography ICG

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Impedance cardiography (ICG) is a simple, non-invasive and cost effective tool for monitor-ing hemodynamic parameters. It has been successfully used to diagnose several cardiovas-cular diseases, like the heart failure and myocardial infarction. In particular, valvular heart disease (VHD) is characterized by the affection of one or more heart valves: mitral, aortic, tricuspid or pulmonary valves and it is usually diagnosed using the Doppler echocardiogra- phy. However, this technique is rather expensive, requires qualified expertise, discontinu- ous, and often not necessary to make just a simple diagnosis. In this paper, a new computer aided diagnosis system is proposed to detect VHD using the ICG signals. Six types of ICG heartbeats are analyzed and classified: normal heartbeats (N), mitral insufficiency heart-beats (MI), aortic insufficiency heartbeats (AI), mitral stenosis heartbeats (MS), aortic steno-sis heartbeats (AS), and pulmonary stenosis heartbeats (PS). The proposed methodology is validated on 120 ICG recordings. Firstly, ICG signal is denoised using the Daubechies wavelet family with order eight (db8). Then, these signals are segmented into several heartbeats and, later, subjected to the linear prediction LP and discrete wavelet transform DWT approaches to extract temporal and time–frequency features, respectively. In order to reduce the number of features and select the most relevant ones among them, the Student's t-test is applied. Therefore, a total of 16 features are selected (3 temporal features and 13 time– frequency features). For the classification step, the support vector machine SVM and k-nearest neighbors KNN classifiers are used. Different combinations between extracted features and classifiers are proposed. Hence, experimental results showed that the combi-nation between temporal features, time–frequency features and SVM classifier achieved the highest classification performance in classifying the N, MI, MS, AI, AS and PS heartbeats with 98.94% of overall accuracy.
Wydawca

Rocznik
Strony
251--261
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
autor
  • University of Tunis El-Manar, ISTMT, Laboratory of Biophysics and Medical Technologies, Tunisia , ms.istmt@gmail.com
  • Salman Bin Abdulaziz University & College of Applied Medical Sciences, Saudi Arabia, istmtrsb@yahoo.fr
Bibliografia
  • [1] Bender JR. Heart valve disease. Yale University School of Medicine Heart Book; 1992. p. 167–75 [Chapter 13].
  • [2] Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin 3rd JP, Fleisher LA, et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 2017;70(July (2)):252–89. http://dx.doi.org/10.1016/j.jacc.2017.03.011.
  • [3] Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Baron- Esquivias G, Baumgartne H, et al. Guidelines on the management of valvular heart disease. Eur Heart J 2012. http://dx.doi.org/10.1093/eurheartj/ehs109.
  • [4] Khraim F, Pike R, Williams J. Using non invasive impedance cardiography to assess cardiac hemodynamic measures of persons with heart failure. Can J Cardiol 2014;30(10):S371.
  • [5] Packer M, Abraham WT, Mehra MR. Utility of impedance cardiography for the identification of short-term risk of clinical decompensation in stable patients with chronic heart failure. J Am Coll Cardiol 2006;47(11):2245–52.
  • [6] Chen SJ, Gong Z, Duan QL. Evaluation of heart function with impedance cardiography in acute myocardial infarction patients. Int J Clin Exp Med 2014;7(3):719–27.
  • [7] Chabchoub S, Mansouri S, Ben Salah R. Diagnosis of mitral insufficiency using impedance cardiography technique ICG. J Electr Bioimpedance 2016;7:28–34.
  • [8] Nowakowski A, Palko T, Wtorek J. Advances in electrical impedance methods in medical diagnostics. Bull Polish Acad Sci 2005;53(3):231–43.
  • [9] Patterson RP. Impedance cardiography: what is the source of the signal?International Conference on Electrical Bioimpedance, Journal of Physics: Conference Series 224 012118; 2010.
  • [10] Cybulski G, Michalak E, Kozluk E, Piatkowska A, Niewiadomski W. Stroke volume and systolic time intervals: beat-to-beat comparison between echocardiography and ambulatory impedance cardiography in supine and tilted positions. Med Biol Eng Comput 2004;42:707–11.
  • [11] Van Eijnatten MAJM, Van Rijssel MJ, Peters RJA, Verdaasdonk RM, Meijer JH. Comparison of cardiac time intervals between echocardiography and impedance cardiography at various heart rates. J Electr Bioimpedance 2014;5:2–8.
  • [12] Faini A, Omboni S, Tifrea M, Bubenek S, Lazar O, Parati G. Cardiac index assessment: validation of a new non-invasive very low current thoracic bioimpedance device by thermodilution. Blood Press 2014;23(2):102–8.
  • [13] Scherhag A, Kaden JJ, Kentschke E, Sueselbeck T, Borggrefe M. Comparison of impedance cardiography and thermodilution-derived measurements of stroke volume and cardiac output at rest and during exercise testing. Cardiovasc Drugs Ther 2005;19:141–7.
  • [14] Engoren M, Barbee D. Comparison of cardiac output determined by bioimpedance, thermodilution, and the Fick method. Am J Crit Care 2005;14:40–5.
  • [15] Lababid Z, Ehmke DA, Durnin RE, Leaverton PE, Lauer RM. The first derivative thoracic impedance cardiogram. Circulation 1970;41:651–8. American Heart Association.
  • [16] Ben Salah R, Alhadidi T, Mansouri S, Naouar M. A new method for cardiac diseases diagnosis. Adv Biosci Biotechnol 2015;6:311–9.
  • [17] Ben Salah R, Marrakchi A, Ellouze N. Cardiac diseases quantification of by temporal and cepstral analysis of plethysmographic signal. J Islam Acad Sci 1989;2(3):204–11.
  • [18] Chabchoub S, Mansouri S, Ben Salah R. Impedance cardiography signal denoising using discrete wavelet transform. Australas Phys Eng Sci Med 2016;39:655. http://dx.doi.org/10.1007/s13246-016-0460-z.
  • [19] Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Trans Biomed Eng 1985;BME-32(3):230–6.
  • [20] Makhoul J. Linear prediction: a tutorial review. Proc IEEE 1975;63:561–80.
  • [21] Martis RJ, Acharya UR, Adeli H. Current methods in electrocardiogram characterization. Comput Biol Med 2014;48:133–49.
  • [22] Martis RJ, Chakraborty C, Ray AK. A two-stage mechanism for registration and classification of ECG using Gaussian mixture model. Pattern Recognit 2009;42:2979–88.
  • [23] Hayes MH. Statistical digital signal processing and modeling. New York, NY, USA: John Wiley & Sons; 1996.
  • [24] Addison PS. Wavelet transforms and the ECG: a review. Physiol Meas 2005;26:R155–99.
  • [25] Cohen L. Time–frequency distributions – a review. Proc IEEE 1986;77(7):941–81.
  • [26] Rioul O, Martin V. Wavelets and signal processing. IEEE Signal Process Mag 1991;14–38.
  • [27] Hlawatsch F, Boudreaux-Bartels GF. Linear and quadratic time–frequency signal representations. IEEE Signal Process Mag 1992;9(2):21–67.
  • [28] Shoeb A, Clifford G. Chapter 16 – wavelets; multiscale activity in physiological signals. Biomedical signal and image processing spring; 2005.
  • [29] Rai HM, Trivedi A, Shukla S. ECG signal processing for abnormalities detection using multi-resolution wavelet transform and artificial neural network classifier. Measurement 2013;46:3238–46.
  • [30] Kim TK. T test as a parametric statistic. Korean J Anesthesiol 2015;68:540–6. Statistical Round, pISSN 2005-6419, eISSN 2005-7563.
  • [31] Vapnik VN. The nature of statistical learning theory. New York: Springer-Verlag; 1995.
  • [32] Ye C, Vijaya Kumar BVK, Coimbra MT. Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans Biomed Eng 2012;59(10).
  • [33] Hsu CW, Chang CC, Lin CJ. A Practical Guide to Support Vector Classification, Technical Report. Department of Computer Science, National Taiwan University; 2003.
  • [34] Domeniconi C, Peng J, Gunopulos D. Locally adaptative metric nearest-neighbor classification. IEEE Trans Pattern Anal Mach Intell 2002;24(9).
  • [35] Mucherin A, Papajorgji PJ, Pardalos PM. K-nearest neighbor classification. Chapter, Data mining in agriculture, volume 34 of the series Springer optimization and its applications. 2009;83–106.
  • [36] Wang J, Neskovic P, Cooper LN. Improving nearest neighbor rule with a simple adaptive distance measure. Pattern Recognit Lett 2007;28:207–13.
  • [37] Desai U, Martis RJ, Nayak CG, Seshikala G, Sarika K, Shetty KR. Decision support system for arrhythmia beats using ECG signals with DCT, DWT and EMD methods: a comparative study. J Mech Med Biol 2016;16(1):1640012.
  • [38] Martis RJ, Acharya UR, Adeli H, Prasad H, Tan JH, Chua KC, et al. Computer aided diagnosis of atrial arrhythmia using dimensionality reduction methods on transform domain representation. Biomed Signal Process Control 2014;13: 295–305.
  • [39] Elhaj FA, Salim N, Harris AR, Swee TT, Ahmed T. 2wArrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput Methods Progr Biomed 2016. 10.1016/ j.cmpb.2015.12.024.
  • [40] Acharya UR, Fujita H, Sudarshan VK, Oh SL, Adam M, Koh JEW, et al. Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads. Knowl Based Syst 2016;99:146–56.
  • [41] Padhy S, Dandapat S. Third-order tensor based analysis of multilead ECG for classification of myocardial infarction. Biomed Signal Process Control 2017;31:71–8.
  • [42] Kumar M, Pachori RB, Acharya UR. Characterization of coronary artery disease using flexible analytic wavelet transform applied on ECG signals. Biomed Signal Process Control 2017;31:301–8.
  • [43] Giri D, Acharya UR, Martis RJ, Sree SV, Lim TC, Ahamed VIT, et al. Automated diagnosis of coronary artery disease affected patients using LDA, PCA, ICA and discrete wavelet transform. Knowl Based Syst 2013;37:274–82.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3f2a13d4-fa52-42c1-9d08-5d577b3fb2c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.