Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2020 | Vol. 68, no. 4 | 979--991
Tytuł artykułu

The use of QLARM to estimate seismic risk in Kirghizstan at the regional and city scales

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An analysis of seismic risk using our tool QLARM has been performed for the Batken region including the cities of Aidarken and Kadamjay, 100 km SW of Osh. The damage to residential buildings and induced casualties has been estimated for a set of seismic scenarios of typical and maximum magnitude considering the existing seismicity data. Population and building datasets have been built based on up-to-date information, and for the two cities, satellite photographs and a feld survey have been used. A preliminary soil response zonation is proposed using seismic ambient noise analyses. In the investigated region, the probability of damaging earthquakes with M >6 is judged to be low because the slip accumulation rate along individual faults is only in the range of 0.01–0.3 cm/year. The amplifcation of seismic waves by soil deposits is estimated to be low; however, the proposed zonation needs to be complemented by additional seismic measurements. The calculations indicate that the combined fatalities of Kadamjay and Aidarken in a hypothetical earthquake of magnitude between 6.0 and 6.6 are fewer than 100.
Wydawca

Czasopismo
Rocznik
Strony
979--991
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
  • ICES - International Centre for Earth Simulation Foundation, Geneva, Switzerland, rossetp@orange.fr
  • ICES - International Centre for Earth Simulation Foundation, Geneva, Switzerland
autor
  • ICES - International Centre for Earth Simulation Foundation, Geneva, Switzerland
Bibliografia
  • 1. Abdrakhmatov K (2009) ISTC Project No. KR 1176, Establishment of the Central Asia Seismic Risk Initiative (CASRI). Technical report on the work performed from: 02.01.2006 to 04.30.2009, Institute of Seismology, National Academia of Sciences, Kyrgyz Republic
  • 2. Abdrakhmatov K, Havenith H-B, Delvaux D, Jongmans D, Trefois P (2003) Probabilistic PGA and Arias intensity maps of Kyrgyzstan (Central Asia). J. Seismolog. 7:203–220
  • 3. Bindi D, Abdrakhmatov K, Parolai S, Mucciarelli M, Gruenthal G, Ischuk A, Mikhailova N, Zschau J (2012) Seismic hazard assessment in Central Asia: outcomes from a site approach. Soil Dyn Earthq Eng 37:84–91
  • 4. Fontiela J, Rosset P, Wyss M, Bezzeghoud M, Rodrigues F (2020) Human losses and damage expected in future earthquakes in Faial Island—Azores. Pure Appl Geophys 177:1831–1844
  • 5. Global Human Settlement Layer (2016) Corbane C, Florczyk A, Pesaresi M, Politis P, Syrris V (2018) GHS built-up grid, derived from Landsat, multitemporal (1975-1990-2000-2014), R2018A. European Commission, Joint Research Centre (JRC) https://doi.org/10.2905/jrc-ghsl-10007
  • 6. Gruenthal G (1998) European macroseismic scale. Conseil de l’Europe, Luxembourg
  • 7. Ischuk A, Bjerrum LW, Kamchybekov M, Abdrakhmatov K, Lindholm C (2018) Probabilistic seismic hazard assessment for the area of Kyrgyzstan, Tajikistan, and Eastern Uzbekistan, Central Asia. Bull Seis Soc Am 108(1):130–144
  • 8. Kalmetieva ZA, Mikolaichuk AV, Moldobekov BD, Meleshko AV, Jantaev MM, Zubovich AV (2009) Atlas of earthquakes in Kyrgyzstan. Technical report UNISDR, ISBN 978-9967-25-829-7
  • 9. Kobotoolbox (2019) https://www.kobotoolbox.org
  • 10. Lang DH, Kumar A, Sulaymanov S, Meslem A (2018) Building typology classification and earthquake vulnerability scale of Central and South Asian building stock. J Build Eng 15:261–277
  • 11. Lunedei E, Malischewsky P (2015) A review and some new issues on the theory of the H/V technique for ambient vibrations. In: Ansal A (ed) Perspectives on European earthquake engineering and seismology. Geotechnical, geological and earthquake engineering, vol 39. Springer, Cham, pp 371–394
  • 12. Mohadjer S, Ehlers TA, Bendick R, Stübner K, Strube T (2016) A Quaternary fault database for central Asia. Nat Hazards Earth Syst Sci 16:529–542
  • 13. NOAA (2019). National Geophysical Data Center/World Data Service (NGDC/WDS): Significant Earthquake Database. National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5TD9V7K
  • 14. OpenStreetMap (2017) https://www.openstreetmap.org
  • 15. Parvez I, Rosset P (2014) The role of microzonation in estimating earthquake risk. In: Earthquake, hazard, risk and disaster, Elsevier’s hazards and disaster series, pp 273–308
  • 16. Rosset P, Wyss M (2017) Seismic loss assessment in Algeria using the tool QLARM. Civil Eng Res J. https://doi.org/10.19080/CERJ.2017.02.555583
  • 17. Rosset P, Bonjour C, Wyss M (2015) QLARM, un outil d’aide à la gestion du risque sismique à échelle variable. In: Leone F, Vinet F (eds) Plan de sauvegarde et outils de gestion de crise. Presses Universitaires de la Méditerranée, Collection Géorisques, Montpellier, pp 91–98
  • 18. Shebalin NV (1968) Methods of engineering seismic data application for seismic zoning. In: Medvedev SV (ed) Seismic zoning of the USSR. Science, Moscow, pp 95–111
  • 19. Shebalin NV (1985) Regularities of the natural disasters (in Russian). Nauki o zemle, Znanie 11:48
  • 20. Tolis S, Rosset P, Wyss M (2013) Detailed building stock at regional scale in three size categories of settlements for 18 countries worldwide, Geneva, Switzerland. UNISDR report, 87 pages and appendix, https://www.unisdr.org/we/inform/publications/49798
  • 21. Torgoev I, Havenith HB, Wyss M., Rosset P, Tolis S (2019) Oцeнки ceйcмичecкoй oпacнocти в Бaткeнcкoй oблacти и coпyтcтвyющиx pиcкoв в Кaдaмжae и Aйдapкeнe//Moнитopинг, пpoгнoзиpoвaниe oпacныx пpoцeccoв и явлeний нa тeppитopии Кыpгызcкoй Pecпyблики (Изд. 16-e c изм. и дoп.), Бишкeк: MЧC КP, pp 688–709 (in Russian)
  • 22. Trendafiloski G, Wyss M, Rosset P, Marmureanu G (2009) Constructing city models to estimate losses due to earthquakes worldwide: application to Bucharest Romania. Earthq Spectra 25(3):665–685
  • 23. Trendafiloski G, Wyss M, Rosset P (2011) Loss estimation module in the second generation software QLARM. In: Spence R, So E, Scawthorn C (eds) Human casualties in earthquakes: progress in modeling and mitigation. Springer, Berlin, pp 381–391
  • 24. Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement. Bull Seismol Soc Am 84(4):974–1002
  • 25. Wieland M, Pittore M, Parolai S, Begaliev U, Yasunov P, Tyagunov S, Moldobekov B, Saidiy S, Ilyasov I, Abakanov T (2015) A multiscale exposure model for seismic risk assessment in central Asia. Seismol Res Lett 86(1):210–222
  • 26. Wyss M (2008) Estimated human losses in future earthquakes in central Myanmar. Seismol Res Lett 79(4):504–509
  • 27. Wyss M (2010) Predicting the human losses implied by predictions of earthquakes: Southern Sumatra and Central Chile. In: Savage MK, Rhoades DA, Smith EGC, Gerstenberger MC, Vere-Jones D (eds) Seismogenesis and earthquake forecasting: The Frank Evison Volume II. Pageoph Topical Volumes. Springer, Basel. https://doi.org/10.1007/s00024-010-0090-4
  • 28. Wyss M (2014) Ten years of real-time earthquake loss alerts. In: Wyss M (ed) Earthquake Hazard, Risk, and Disasters. Elsevier, Waltham, pp 143–165
  • 29. Wyss M (2017) Reported estimated quake death tolls to save lives. Nature 545(7653):151–153
  • 30. Wyss M, Chamlagain D (2019) Estimated casualties in possible future earthquakes south and west of the M7.8 Gorkha earthquake of 2015. Acta Geophys 67:423–429
  • 31. Wyss M, Rosset Ph (2013) Mapping seismic risk: the current crisis. Nat Hazard 68(1):49–52
  • 32. Wyss M, Zuniga R (2016) Estimated casualties in a possible great earthquake along the Pacific coast of Mexico. Bull Seismol Soc Am 106(4):1867–1874
  • 33. Wyss M, Tolis S, Rosset P, Pacchiani F (2013) Approximate Model for Worldwide Building Stock in Three Size Categories of Settlements, Geneva, Switzerland. UNISDR report, 34 pages and appendix, https://www.preventionweb.net/english/hyogo/gar/2013/en/bgdocs/WAPMERR,%202012.pdf
  • 34. Wyss M, Gupta S, Rosset P (2017) Casualty estimate in two up-dip complementary Himalayan earthquakes. Seismol Res Lett 86(6):1508–1515
  • 35. Wyss M, Rosset P, Tolis S, Havenith HB, Torgoev I, Speiser M (2018a) Evaluation of the seismic hazard and risk in the Batken region, Kyrgyzstan, with special attention to waste deposits. ICES technical report to MSF
  • 36. Wyss M, Gupta S, Rosset P (2018b) Casualty estimate in repeat Himalayan earthquakes in India. Bull Seismol Soc Am 108(5A):2877–2893
  • 37. Xu Y, Roecker SW, Wei R, Zhang W, Wei B (2006) Analysis of seismic activity in the crust from earthquake relocation in the central Tien Shan. Bull Seismol Soc Am 96:737–744
  • 38. Zhang P, Shen Z, Wang M, Gan W, Bürgmann R, Molnar P et al (2004) Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 32:809–812
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3f1b0411-eae3-4dd7-b665-c5285926386f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.