Czasopismo
2022
|
Vol. 22, no. 3
|
art. no. e138
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Unlike metals, polymers are highly affected by the heat generation during the machining of the workpiece, because the thermal conductivity of polymers are considerably lower than metals, and therefore heat is much more effective in the cutting zone. If the appropriate cutting parameters are not selected, the polymers become excessively deformed and the final part has high surface roughness, dimensionally large burr formation, or dimensional deviations. Machining of polymers ultra-high molecular weight polyethylene (UHMWPE) is quite common in industrial applications. In this study, the effect of SiC fillers on the machinability of UHMWPE polymer composite was investigated. First, different samples were produced using different filler sizes (1 μm, 50 μm, and 100 μm) and different filler amounts (1%, 3%, 5%). Micro-milling tests were carried out at a constant feed rate (70 mm/min), constant cutting depth (0.1 mm) and spindle speeds (1200, 2800, and 4400 rpm). Tool overhang lengths were selected as 10, 15, and 20 mm. During the experiments, the surface/burr shapes, cutting temperatures and cutting forces were observed. In general, it is observed that SiC filler reduces cutting forces and cutting temperatures. In the further stage of the study, Taguchi analysis was performed in the light of different SiC filler sizes, filler amounts, rotational speeds, and tool overhang lengths.
Czasopismo
Rocznik
Tom
Strony
art. no. e138
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
- Department of Mechanical Engineering, Eskişehir Osmangazi University, Eskişehir, Turkey
autor
- Department of Aeronautical Engineering, Eskişehir Osmangazi University, Eskişehir, Turkey, sgurgen@ogu.edu.tr
Bibliografia
- 1. Groover MP. Fundamentals of modern manufacturing. 7th ed. Wiley; 2020.
- 2. Macuvele DLP, Nones J, Matsinhe JV, Lima MM, Soares C, Fiori MA, Riella HG. Advances in ultra high molecular weight polyethylene/hydroxyapatite composites for biomedical applications: a brief review. Mater Sci Eng. 2017;76:1248-62.
- 3. Gomez-Barrena E, Puertolas JA, Munuera L, Konttinen YT. Update on UHMWPE research from the bench to the bedside. Acta Orthop. 2008;79:832-40.
- 4. Ishihara K. Highly lubricated polymer interfaces for advanced artificial hip joints through biomimetic design. Polym J. 2015;47:587-97.
- 5. Salles JLC, Gonçalves MTT. Effects of machining parameters on surface quality of ultra high molecular weight polyethylene. Materials. 2003;8(1):1-10.
- 6. Pennings AJ, Kiel AM. Fractionation of polymers by crystallization from solution, III. On the morphologogy of fibrillar polyethylene crystals grown in solution. Kolloid Zeitschrift Zeitschrift für Polymere. 1965;205(2):160-2.
- 7. Zwijnenburg A. Longitudinal growth, morphology and physical properties of fibrillar polyethylene crystals (PhD Thesis), University of Groningen. 1978.
- 8. Smith P, Lemstra PJ. Preparing polyethylene filaments. UK patent application GB2051667. 1979.
- 9. Kalb B, Pennings AJ. Spinning of high molecular weight polyethylene solution and subsequent drawing in a temperature gradient. Polym Bull. 1979;1:871-6.
- 10. Aleem A, Arain FA. An environmentally friendly process for the preparation of UHMWPE as-spun fibres. Int J Polymer Sci. 2014;3:1-5.
- 11. Altan M, Uysal A. Practical determination of hole precision in drilling of ultra high molecular weight polyethylene. 3rd National Design, Manufacturing and Analysis Congress. Balikesir. 2012.
- 12. Altan M. Investigation of burr formation in drilling of ultra high molecular weight polyethylene by Taguchi approach. 3rd National Machining Symposium Ankara. 2012.
- 13. Rai-Choudhury P. Handbook of microlithography, micromachining, and microfabrication: microlithography, vol. 1. IET; 1997.
- 14. Okazaki Y, Mishima N, Ashida K. Microfactory and micromachine tools. Reported in The 1st Korea-Japan Conference on Positioning Technology. Korea. 2002.
- 15. Qin Y, Ma Y, Harrison C, Brockett A, Zhou M, Zhao J, Law F, Razali A, Smith R, Eguia J. Development of a new machine system for the forming of micro-sheet-products. Int J Mater Form. 2008;1(1):475-8.
- 16. Son SM, Lim HL, Ahn JH. Effects of the friction coefficient on the minimum cutting thickness in micro cutting. Int J Mach Tools Manuf. 2005;45:529-35.
- 17. Sabat AB. The effect of the tool cutting edge geometry on the quality of machined surface in micro turning operation. Design for Manufacturing and the Life Cycle Conference. 4b: 295-299. 2005.
- 18. Dornfeld D, Min S, Takeuchi Y. Recent advances in mechanical micromachining. Ann CIRP. 2006;55:745-68.
- 19. Kwak JS, Kim YS. Mechanical properties and grinding performance on aluminum-based metal matrix composites. J Mater Process Technol. 2008;201(1):596-600.
- 20. Basavarajappa S, Chandramohan G, Davim JP. Some studies on drilling of hybrid metal matrix composites based on Taguchi techniques. J Mater Process Technol. 2008;196(1):332-8.
- 21. Gaitonde VN, Karnik SN, Davim JP. Some studies in metal matrix composites machining using response surface methodology. J Reinf Plast Compos. 2008;28(20):2445-57.
- 22. Gürgen S, Sofuoğlu MA. Micro-machining of UHMWPE composites reinforced with carbide fillers. Archiv Civ Mech Eng. 2021;21:146.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3f116e39-cce0-4ce9-93dd-51eed5cc0b17