Warianty tytułu
Języki publikacji
Abstrakty
In the present work TiO₂ nanoparticles (NPs) have been dispersed into three different nematic liquid crystals (2020, 1823A and 1550C) in different concentration. The value of the birefringence (Δn) has been calculated by the transmitted intensity method at a 632.8 nm wavelength. NLC 2020 used in the present study is a high birefringent material (Δn = 0.44), NLC 1550C is a low birefringent material (Δn = 0.067) and NLC 1823A is a mid birefringent material (Δn = 0.14). An increased value of birefringence has been found after dispersion of TiO₂ NPs in all three NLCs but this increment depends upon the concentration of the dopant material, temperature range and chemical character of the mixtures. It is suggested that this LC materials can be applicable in making of phase shifters, compensators and many more photonic devices.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
11--18
Opis fizyczny
Bibliogr. 43 poz., rys., wykr.
Twórcy
autor
- Liquid Crystal Research Lab, Department of Physics, University of Lucknow, Lucknow, 226007, India
autor
- Liquid Crystal Research Lab, Department of Physics, University of Lucknow, Lucknow, 226007, India
autor
- Liquid Crystal Research Lab, Department of Physics, University of Lucknow, Lucknow, 226007, India
autor
- Liquid Crystal Research Lab, Department of Physics, University of Lucknow, Lucknow, 226007, India
autor
- Institute of Chemistry, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
autor
- Institute of Chemistry, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
autor
- Liquid Crystal Research Lab, Department of Physics, University of Lucknow, Lucknow, 226007, India, rajiv.manohar@gmail.com
Bibliografia
- [1] K. Tarumi, M. Heckmeyer, M. Klasen-Memer, Advanced liquid crystal materials for TFT monitor and TV applications, J. SID 10 (2002) 127-132.
- [2] M. Schadt, Liquid crystal materials and liquid crystal display, Ann. Rev. Matter Sci. 27 (1997) 305-379.
- [3] R. Dąbrowski, P. Kula, J. Herman, High birefringence liquid crystals, Crystals 3 (2013) 443-482.
- [4] E. Ouskova, O. Buchnev, V. Reshetnyak, Dielectric relaxation spectroscopy of a nematic liquid crystal doped with ferroelectric Sn2P2S6 nanoparticles, Liq. Cryst. 30 (2003) 1235-1239.
- [5] A. Glushchenko, C.I. Cheon, J. West, Ferroelectric particles in liquid crystals: recent frontiers, Mol. Cryst. Liq. Cryst. 453 (2006) 227-237.
- [6] M. Kaczmarek, O. Buchnev, I. Nandhakumar, Ferroelectric nanoparticles in low refractive index liquid crystals for strong electro-optic response, Appl. Phys. Lett. 92 (2008) 103307-103313.
- [7] W. Kuczynski, B. Zywucki, J. Malecki, Determination of orientational order parameter in various liquid crystalline phases, Mol. Cryst. Liq. Cryst. 385 (2002) 1-19.
- [8] J. Kędzierski, K. Garbat, Z. Raszewski, M.A. Kojdecki, K. Kowiorski, L.R. Jaroszewicz, E. Miszczyk, R. Dąbrowski, J. Zieliński, W. Piecek, Optical properties of a liquid crystal with small ordinary and extraordinary refractive indices and small optical anisotropy, Opto-Electron. Review. 22 (2014) 162-165.
- [9] X. Li, C. Yang, Q. Wang, D. Jia, L. Hu, Z. Peng, Enhanced birefringence for metallic nanoparticle doped liquid crystal, Opt. Commun. 286 (2013) 224-227.
- [10] M. Pande, P.K. Tripathi, S.K. Gupta, R. Manohar, S. Singh, Enhancement of birefringence of liquid crystal with dispersion of poly (n-butyl methacrylate) (PBMA), Liquid Cryst. 42 (2015) 1-7.
- [11] S.K. Gupta, D.P. Singh, R. Manohar, S. Kumar, Tuning phase retardation behaviour of nematic liquid crystal using quantum dot, Curr. Appl. Phys. 16 (2016) 79-82.
- [12] O. Catanescu, L.C. Chien, High birefringence lateral difluoro phenyl tolane liquid crystals, Liq. Cryst. 33 (2006) 115-120.
- [13] M. Reuter, K. Garbat, N. Vieweg, B.M. Fischer, R. Dąbrowski, M. Koch, J. Dziaduszek, S. Urban, Terahertz and optical properties of nematic mixtures composed of liquid crystal isothiocyanates, fluorides and cyanides, J. Mater Chem C. 1 (2013) 4457-4463.
- [14] Y. Garbovskiy, V. Zagorodnii, P. Krivosik, J. Lovejoy, R.E. Camley, Z. Celinski, A. Glushchenko, J. Dziaduszek, R. Dąbrowski, Liquid crystal phase shifters at millimetre wave frequencies, J. Appl. Phys. 111 (2012) 054504-054544.
- [15] E. Nowinowski-Kruszelnicki, L. Jaroszewicz, Z. Raszewski, L. Soms, W. Piecek, P. Perkowski, J. K˛edzierski, R. Dąbrowski, M. Olifierczuk, K. Garbat, E. Miszczyk, Liquid crystalcell for spaceborne laser rangefinder to space mission applications, Opto-Electron. Rev. 20 (2012) 315-322.
- [16] E. Nowinowski-Kruszelnicki, J. Kedzierski, Z. Raszewski, L. Jaroszewicz, R. Dabrowski, M. Kojdecki, W. Piecek, P. Perkowski, K. Garbat, M. Olifierczuk, M. Sutkowski, K. Ogro- dnik, P. Morawiak, E. Miszczyk, High birefringence liquid crystal mixtures for electro-optical devices, Opt. Appl. 42 (2012) 167-180.
- [17] C.Y. Chang, K.W. Ho, C.S. Hsu, C.H. Lin, S. Gauza, S.T. Wu, Synthesis and mesomorphic properties of a-methylstilbenebased liquid crystals, Liq. Cryst. 36 (2009) 425-433.
- [18] Z. Raszewski, E. Kruszelnicki-Nowinowski, J. Kędzierski, P. Perkowski, W. Piecek, R. Dąbrowski, P. Morawiak, K. Ogrodnik, Electrically tunable liquid crystal filters, Mol. Cryst. Liq. Cryst. 525 (2010) 112-127.
- [19] Z. Raszewski, W. Piecek, L. Jaroszewicz, L. Soms, J. Marczak, E. Nowinowski-Kruszelnicki, P. Perkowski, J. Kędzierski, E. Miszczyk, M.Olifierczuk, P. Morawiak, R. Mazur, Laser damage resistant nematic liquid crystal cell, J. Appl. Phys. 114 (2013) 053104-053106.
- [20] D.A. Dunmur, D.A. Hitchen, H. Xi-Jun, The physical and molecular properties of some nematic flurobiphenylalkanes, Mol. Cryst. Liq. Cryst. 140 (1986) 303-318.
- [21] C. Versace, G. Cipparrone, D. Lucchetta, D. Pucci, M. Ghedini, Refractive index measurements of the Palladium complexed liquid crystal A’PdA2, Mol. Cryst.Liq. Cryst. 212 (1992) 313-318.
- [22] P. Lampen, E.H. Korte, A. Blumenberg, Comparision of methods for determining linear birefringence, SPIE Conf. 1575 (1992) 284-285.
- [23] J. Kedzierski, Z. Raszewski, M.A. Kojdecki, E. Kruszelnicki-Nowinowski, P. Perkowski, W. Piecek, E. Miszczyk, J. Zieliński, P. Morawiak, K. Ogrodnik, Determination of ordinary and extraordinary refractive indices of nematic liquid crystals by using wedge cells, Opto-Electron. Rev. 18 (2010) 214-218.
- [24] S.-T. Wu, U. Efron, L.V.D. Hess, Birefringence measurements of liquid crystals, Appl. Opt. 23 (1984) 391-3915.
- [25] P. Kirsch, M. Bremer, Nematic liquid crystals for active matrix displays: Molecular design and synthesis, Angew. Chem. Int. Ed. 39 (2000) 4216-4235.
- [26] Y. Iwashita, M. Kaneoya, K. Takeuchi, S. Takehara, H. Takatsu, Physical property of new liquid crystal materials and mixture design for active matrix LCD, Mol. Cryst. Liq. Cryst. 364 (2001) 851-858.
- [27] D. Pauluth, K. Tarumi, Advanced liquid crystals for television, J. Mater. Chem. 14 (2004) 1219-1227.
- [28] K. Nishiyama, M. Okita, S. Kawaguchi, K. Teranishi, R. Takamatsu, 32" WXGA LCD TV using OCB mode, low temperature p-Si TFT and Blinking Backlight Technology, SID Int, Symp. Dig. Tech. 36 (2005) 132-135.
- [29] G. Harbers, C. Hoelen, High performance LCD backlight using high intensity red, green and blue light emitting diodes, SID Int. Symp. Dig. Tech. 32 (2001) 702-705.
- [30] S. Gauza, X. Zhu, W. Piecek, R. Dąbrowski, S.T. Wu, Fast switching liquid crystals for color-sequential LCDs, J. Display Technol. 3 (2007) 250-252.
- [31] T.R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A.W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, J. Wojcik, Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres, Meas. Sci. Technol. 17 (2006) 985-991.
- [32] J. Dziaduszek, R. Dąbrowski, S. Urban, K. Garbat, A. Glushchenko, K. Czupryński, Selected fluorosubstituted phenyltolanes with a terminal group: NCS, CN, F, OCF3 and their mesogenic and dielectric properties and use for the formulation of high birefringence nematic mixtures to GHz and THz applications, Liq. Cryst. (2017) 1-16.
- [33] R. Mazur, W. Piecek, Z. Raszewski, P. Morawiak, K. Garbat, O. Chojnowska, M. Mrukiewicz, M. Olifierczuk, J. Kedzierski, R. Dabrowski, D. Weglowska, Nematic liquid crystal mixtures for 3D active glasses application, Liq. Cryst. (2016) 1-10.
- [34] S.P. Yadav, R. Manohar, S. Singh, Effect of TiO2 nanoparticles dispersion on ionic behaviour in nematic liquid crystal, Liq. Cryst. 42 (2015) 1095-1101.
- [35] S.K. Gupta, D.P. Singh, R. Manohar, Electrical and polarization behaviour of titania nanoparticles doped ferroelectric liquid crystal, Adv. Mater. Lett. 6 (2015) 68-72.
- [36] G. Pathak, S. Pandey, R. Katiyar, A. Srivastava, R. Dabrowski, K. Garbat, R. Manohar, Analysis of photoluminescence, UV absorbance, optical band gap and threshold voltage of TiO2 nanoparticles dispersed in high birefringence nematic liquid crystal towards its application in display and photovoltaic devices, J. Lumin. 192 (2017) 33-39.
- [37] S. Pandey, T. Vimal, D.P. Singh, S.K. Gupta, G. Pathak, R. Katiyar, R. Manohar, Core/shell quantum dots in ferroelectric liquid crystals matrix: effect of spontaneous polarization coupling with dopant, Liq. Cryst. 43 (2016) 980-993.
- [38] D.P. Singh, S.K. Gupta, S. Pandey, K. Singh, R. Manohar, Electro-optical, UV absorbance, and UV photoluminescence analysis of Se95In5 chalcogenide glass microparticle doped ferroelectric liquid crystal, J. Appl. Phys. 115 (2014) 214103-214108.
- [39] J.L. West, G. Zhang, A. Glushchenko, Fast birefringent mode stressed liquid crystal, Appl. Phys. Lett. 86 (2005) 031111-031113.
- [40] S.T. Wu, U. Efron, L.D. Hess, Birefringence measurements of liquid crystals, Appl. Opt. 23 (1984) 3911-3915.
- [41] S.T. Wu, Birefringence dispersions of liquid crystals, Phys. Rev. A 33 (1986) 1270-1278.
- [42] A.K. Prasad, M.K. Malay Das, Optical birefringence studies of a binary mixture with the nematic–smectic Ad-re-entrant nematic phase sequence, J. Phys: Condens. Matter. 22 (2010) 195106-195107.
- [43] M. Mrukiewicz, P. Perkowski, R. Mazur, O. Chojnowska, W. Piecek, R. Dąbrowski, Strong modulation of electric permittivity at an isotropic-nematic phase transition in a liquid crystal mixture for optical devices based on the Kerr effect, J. Mol. Liq. 223 (2016) 873-879.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3ef9da15-d0c7-433c-b44e-dfe6473bef96