Czasopismo
2006
|
Vol. 18, nr 1-2
|
183--186
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: A study was conducted to investigate the dynamic recrystallization of commercially pure Titanium alloy during high temperature deformation in order to understand it further and enable expansion of its usage. Design/methodology/approach: Uniaxial tensile tests were carried out at 600, 750 and 800°C with different initial strain rates. Microstructure evolution during high temperature tensile testing was studied by using optical microscope and Electron Back Scattered Diffraction. Findings: It is found that this titanium alloys do not show good superplasticity at 600-800°C due to the rapid grain growth. Studies also show that the dynamic recrystallization took place at high temperatures. This process not only decreases the average grain size of the alloy but also increase the misorientation angle of the grain boundary. Practical implications: The investigations of dynamic recrystallization of commercially pure titanium alloy as well as related phenomena are important for achieving desired mechanical behavior of the material. Originality/value: The dynamic recrystallization phenomenon of commercially pure titanium alloy as well as related mechanism is investigated.
Rocznik
Tom
Strony
183--186
Opis fizyczny
Bibliogr. 15 poz., rys., wykr.
Twórcy
autor
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore, mmjtan@ntu.edu.sg
autor
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
Bibliografia
- [1] F. J. Campideli, H. E. P. Sobrinho, L. Correr; D. Goes, M. Fernando: Stress-relieving and porcelain firing cycle influence on marginal fit of commercially pure titanium and titanium-aluminum-vanadium copings, Dental Materials 19 (2003), 686-691.
- [2] C. R. F. Azevedo, A. P. D. Santos: Environmental effects during fatigue testing: fractographic observation of commercially pure titanium plate for cranio-facial fixation, Engineering Failure Analysis 10 (2003) 431-442.
- [3] S. Kundu, M. Ghosh, A. Laik, K. Bhanumurthy, G. B. Kale, S. Chatterjee: Diffusion bonding of commercially pure titanium to 304 stainless steel using copper interlayer, Materials Science & Engineering: A407 (2005) 154-161.
- [4] Jaan-Ming Liu, Sheh-Shon Chou: Study on the microstructure and formability of commercially pure titanium in two-temperature deep drawing, Journal of Materials Processing Technology 95 (1999) 65-70.
- [5] C. Y. Gao, P. Lours, G. Bernhart: Thermomechanical stress analysis of superplastic forming tools, Journal of Materials Processing Technology 169 (2005) 281-289.
- [6] H. L. Xing, K. F. Zhang, Z. R. Wang: A preform design method for sheet superplastic bulging with finite element modeling, Journal of Materials Processing Technology 151 (2004) 284-288.
- [7] K. F. Zhang, G. F. Wang, D. Z. Wu, Z. R. Wang: Research on the controlling of the thickness distribution in superplastic forming, Journal of Materials Processing Technology 151 (2004) 54-57.
- [8] Z. Y. Ma, R. S. Mishra: Cavitation in superplastic 7075Al alloys prepared via friction stir processing, Acta Materialia 51 (2003) 3551-3569.
- [9] A. H. Chokshi, T. G. Langdon: The influence of rolling direction on the mechanical behavior and formation of cavity stringers in the superplastic Zn-22% Al alloy, Acta Metallurgy 37 (1989), 715-723.
- [10] S. N. Patankar, Yeo Thye Kwang, Tan Ming Jen: Alpha casing and superplastic behavior of Ti-6Al-4V, Journal of Materials Processing Technology 112 (2001)24-28.
- [11] Y. M. Hwang, H. S. Lay: Study on superplastic blow-forming in a rectangular closed-die, Journal of Materials Processing Technology, 140 (2003) 426-431.
- [12] X. J. Zhu, M. J. Tan, W. Zhou: Enhanced superplasticity in commercially pure titanium alloy, Scripta Materialia 52 (2005) 651-655.
- [13] T. G. Nieh, J. Wadsworth, O. D. Sherby: Superplasticity in Metals and Ceramics, Cambridge: Cambridge University Press, (1996).
- [14] K. Tsuzaki, X. Huang, T. Maki: Mechanism of dynamic continuous recrystallization during superplastic deformation in a microduplex stainless steel, Acta Materialia 44 (1996) 4491-4499.
- [15] Y. Xun, M. J.Tan, T. G. Nieh: Grain boundary characterisation in superplastic deformation of Al-Li alloy using electron backscatter diffraction, Materials Science and Technology 20 (2004) 173-180.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3ebcb08f-ae73-407e-9afa-0f0fdff534ce