Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2021 | R. 26, nr 5 | 366--378
Tytuł artykułu

Badania rozmieszczenia cząstek dodatków mineralnych w cementach dwuskładnikowych

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
EN
Particles spasing of supplementary cementitious materials in binary blended cements
Języki publikacji
PL EN
Abstrakty
PL
Zbadano wpływ dodatku wapiennego [DW], dolomitowego [DD], metaillitu [MI] i prażonej gliny illitowej [GP] na gęstość mikrostruktury zaczynów z cementów dwuskładnikowych, pod względem grubości warstwy wody [GWW] i optymalnego zapotrzebowania na wodę [OZW]. Przeanalizowano wpływ tych uzupełniających materiałów cementowych [UMC] na rozpływ zaczynów i zapraw cementowych oraz omówiono wytrzymałość zapraw na ściskanie. Wyniki wykazują, że wpływ dodatków UMC na gęstość mikrostruktury zaczynów jest ściśle związany z rozkładem wielkości ziaren. Optymalna zawartość UMC zapewnia wieloskładnikowym cementom maksymalną gęstość mikrostruktury zaczynów. Wpływ na rozpływ zaczynów zależy nie tylko od gęstości mikrostruktury, ale także od powierzchni ziaren, a zastosowanie wymienionych UMC zwiększa wytrzymałość zapraw na ściskanie.
EN
The effect of limestone filler [LF], dolomite filler [DF], metakaolin [MK], and metaillite [MI] additives on the packing density of the binary blended cements were studied using of the water film thickness [WFT] and the optimal water demand [OWD]. The influence of these supplementary cementitious materials [SCM] on the flowability of cement pastes and mortars was analyzed and the compressive strength of mortars was discussed. The results indicate that the incorporation of these SCM on the packing density is highly related to the particle size distribution and the optimal addition of SCM to the blended cements, assures maximum packing density. The effects on flowability not only depend on packing density but of the surface area of particles and the addition of SCM enhance the compressive strength of the mortars.
Wydawca

Czasopismo
Rocznik
Strony
366--378
Opis fizyczny
Bibliogr. 25 poz., il., tab.
Twórcy
  • Facultad de Ingeniería - CIFICEN (UNCPBA -CICPBA- CONICET), Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Argentina, gmarchetti@fio.unicen.edu.ar
  • Facultad de Ingeniería - CIFICEN (UNCPBA -CICPBA- CONICET), Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Argentina
  • Facultad de Ingeniería - CIFICEN (UNCPBA -CICPBA- CONICET), Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Argentina
  • Facultad de Ingeniería - CIFICEN (UNCPBA -CICPBA- CONICET), Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Argentina
Bibliografia
  • [1] P.-C. Aı̈tcin, Cements of yesterday and today: concrete of tomorrow. Cem. Concr. Res. 30(9) 1349-1359 (2000).
  • [2] M. M. Alonso, M. Palacios, F. Puertas, A. G. De la Torre, and M. A. G. Aranda, Effect of polycarboxylate admixture structure on cement paste rheology. Mater. Constr. 57, 65-81 (2007).
  • [3] E. K. Anastasiou, Effect of High Calcium Fly Ash, Ladle Furnace Slag, and Limestone Filler on Packing Density, Consistency, and Strength of Cement Pastes. Materials 14, 301 (2021).
  • [4] ASTM C1437 Standard test method for flow of hydraulic cement mortar, C1437 (2007).
  • [5] O. A. Cabrera, L. P. Traversa, and N. F. Ortega, Fluidez de morteros cementíceos con arenas machacadas, Mater. Constr. 60, 115-130 (2010).
  • [6] G. P. Cordoba, S. V. Zito, R. Sposito, V. F. Rahhal, A. Tironi, C. Thienel, et al., Concretes with Calcined Clay and Calcined Shale: Workability, Mechanical, and Transport Properties, J. Mater. Civ. Eng. 32, 04020224 (2020).
  • [7] F. De Larrard, Concrete mixture proportioning: a scientific approach, E & FN SPON, 2014.
  • [8] A. Di Salvo Barsi, G. Marchetti, M. A. Trezza, and E. F. Irassar, Carbonate rocks as fillers in blended cements: Physical and mechanical properties. Constr. Build. Mater. 248, 118697 (2020).
  • [9] EN 196-1, 196-1, Methods of Testing Cement-Part 1.
  • [10] Y. Ghasemi, M. Emborg, and A. Cwirzen, Effect of water film thickness on the flow in conventional mortars and concrete. Mater. Struct. 52, 62 (2019).
  • [11] D. L. Kantro, Influence of water-reducing admixtures on properties of cement paste-a miniature slump test. Cement, Concr. Aggreg. 2, 95-102 (1980).
  • [12] A. K. H. Kwan, and W. W. S. Fung, Packing density measurement and modelling of fine aggregate and mortar. Cem. Concr. Comp. 31, 349-357 (2009).
  • [13] A. K. H. Kwan, and L. G. Li, Combined effects of water film thickness and paste film thickness on rheology of mortar. Mater. Struct. 45(9), 1359-1374 (2012).
  • [14] A. K. H. Kwan, L. G. Li, and W. W. S. Fung, Wet packing of blended fine and coarse aggregate. Mater. Struct. 45(6), 817-828 (2012).
  • [15] A. K. H. Kwan, and H. H. C. Wong, Effects of packing density, excess water and solid surface area on flowability of cement paste. Adv. Cem. Res. 20(1), 1-11 (2008).
  • [16] A. K. Kwan, and H. H. C. Wong, Packing density of cementitious materials: part 2-packing and flow of OPC+ PFA+ CSF. Mater. Struct. 41(4), 773-784 (2008).
  • [17] L. G. Li, and A. K. H. Kwan, Mortar design based on water film thickness. Constr. Build. Mater. 25(5), 2381-2390 (2011).
  • [18] L. G. Li, and A. K. H. Kwan, Effects of superplasticizer type on packing density, water film thickness and flowability of cementitious paste. Constr. Build. Mater. 86, 113-119 (2015).
  • [19] G. Marchetti, J. Pokorny, A. Tironi, M. A. Trezza, V. F. Rahhal, Z. Pavlík, et al., Blended cements with calcined illitic clay: workability and hydration, in Calcined Clays for Sustainable Concrete, Springer, 2018, pp. 310-317.
  • [20] G. Marchetti, V. F. Rahhal, and E. F. Irassar, Influence of packing density and water film thickness on early-age properties of cement pastes with limestone filler and metakaolin. Mater. Struct. 50(2), 1-11 (2017).
  • [21] G. Marchetti, V. Rahhal, Z. Pavlík, M. Pavlíková, E. F. Irassar, Assessment of packing, flowability, hydration kinetics, and strength of blended cements with illitic calcined shale. Constr. Build. Mater. 254, 119042 (2020).
  • [22] T. Sedran, F. de Larrard, RENÉ-LCPC: un logiciel pour optimiser la granularité des matériaux de génie civil, Bulletin de Liaison Des Laboratoires Des Ponts et Chaussées (1994), no. 194.
  • [23] J. I. Tobón, O. Mendoza, O. J. Restrepo, M. V. Borrachero, and J. Payá, Effect of different high surface area silicas on the rheology of cement paste. Mater. Constr. 70, 231 (2020).
  • [24] H. H. C. Wong, and A. K. H. Kwan, Packing density of cementitious materials: part 1-measurement using a wet packing method, Mater Struct 41(4), 689-701 (2008).
  • [25] T. Zhang, Q. Yu, J. Wei, P. Zhang, and P. Chen, A gap-graded particle size distribution for blended cements: Analytical approach and experimental validation, Powder Techn. 214(2), 259-268 (2011).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3e5884c6-b0e8-45a0-9cf5-956c860264f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.