Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 22, no. 3 | art. no. e142
Tytuł artykułu

Bending performance of post‑fire lightweight polyethylene metal sandwich panels

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigated the bending performance of post-fire lightweight polyethylene metal sandwich panels with different aspect ratios and span conditions using actual fires and post-fire three-point bending tests. The damage patterns and buckling behavior of sandwich panels after an actual fire are discussed. The effects of lamination with dimensional ratios (vertically and horizontally laminated) and span (single and double-span) on parameters, such as fire spread behavior, buckling behavior, load-deflection, bending modulus degradation efficiency, and residual bending stiffness were investigated. The results showed that the double-span fixation mode formed a double-peaked flame, becoming more evident as the aspect ratio decreased. The double-span helped suppress the upward propagation of the flame and reduced the degradation of the bending modulus. The bending stiffness was 10-20% higher than that of the single-span sandwich panels. In addition, the maximum service limit deflection of post-fire sandwich panels with different spans was also derived based on the normal limit of use standard.
Wydawca

Rocznik
Strony
art. no. e142
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr
Twórcy
autor
  • Jiangsu Key Laboratory of Urban and Industrial Safety, College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China
autor
  • Jiangsu Key Laboratory of Urban and Industrial Safety, College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China
  • Jiangsu Key Laboratory of Urban and Industrial Safety, College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China
  • Jiangsu Key Laboratory of Urban and Industrial Safety, College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China
autor
  • Jiangsu Key Laboratory of Urban and Industrial Safety, College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China, maxmuse.zhou@njtech.edu.cn
  • School Environment and Safety Engineering, Changzhou University, Changzhou 213164, China
Bibliografia
  • 1. Smakosz Ł, Kreja I, Pozorski Z. Flexural behavior of composite structural insulated panels with magnesium oxide board facings. Arch Civ Mech Eng. 2020;20:105. https://doi.org/10.1007/s43452-020-00109-y.
  • 2. Yuen ACY, Chen TBY, Li A, De Cachinho Cordeiro IM, Liu L, Liu H, et al. Evaluating the fire risk associated with cladding panels: an overview of fire incidents, policies, and future perspective in fire standards. Fire Mater. 2021;45:663-89. https://doi.org/10.1002/fam.2973.
  • 3. Venkatesh K, Ankit A. Conditional assessment of fire damaged structures: from reconnaissance to advanced analysis. Department of Civil and Environmental Engineering, Michigan State University. 2020. https://peer.berkeley.edu/sites/default/files/ucb_assessment_of_fire_damaged_concrete_structures_jan_2020.pdf.
  • 4. Liu J, Xiang L, Kan T. The effect of temperature on the bending properties and failure mechanism of composite truss core sandwich structures. Compos Part A Appl Sci Manuf. 2015;79:146-54. https://doi.org/10.1016/j.compositesa.2015.09.017.
  • 5. Li Z, Zheng Z, Yu J, Qian C, Lu F. Deformation and failure mechanisms of sandwich beams under three-point bending at elevated temperatures. Compos Struct. 2014;111:285-90. https://doi.org/10.1016/j.compstruct.2014.01.005.
  • 6. Zhang S, Dulieu-Barton JM, Thomsen OT. The effect of temperature on the failure modes of polymer foam cored sandwich structures. Compos Struct. 2015;121:104-13. https://doi.org/10.1016/j.compstruct.2014.10.032.
  • 7. Zhang S, Dulieu-Barton JM, Thomsen OT. The effect of elevated temperatures on the bending behaviour of foam cored sandwich structures. J Compos Mater. 2015;49:3809-22. https://doi.org/10.1177/0021998315569748.
  • 8. Shang L, Wu Y, Fang Y, Li Y. High temperature mechanical properties of a vented Ti-6Al-4V honeycomb sandwich panel. Materials. 2020;13:3008. https://doi.org/10.3390/ma13133008.
  • 9. Zhang L, Chen Y, He R, Bai X, Zhang K, Ai S, Yang Y, Fang D. Bending behavior of lightweight C/SiC pyramidal lattice core sandwich panels. Int J Mech Sci. 2020;171: 105409. https://doi.org/10.1016/j.ijmecsci.2019.105409.
  • 10. Liu J, Zhou Z, Wu L, Ma L, Pan S. High temperature residual properties of carbon fiber composite sandwich panel with pyramidal truss cores. Appl Compos Mater. 2013;20:537-52. https://doi.org/10.1007/s10443-012-9275-6.
  • 11. Zhao R, Hu C, Wang Y, Pang S, Li J, Tang S, et al. Construction of sandwich-structured C/C-SiC and C/C-SiC-ZrC composites with good mechanical and anti-ablation properties. J Eur Ceram Soc. 2022;42:1219-26. https://doi.org/10.1016/j.jeurceramsoc.2021.12.006.
  • 12. Md Shah AU, Sultan MTH, Jawaid M. Sandwich-structured bamboo powder/glass fibre-reinforced epoxy hybrid composites-mechanical performance in static and dynamic evaluations. J Sandw Struct Mater. 2021;23:47-64. https://doi.org/10.1177/1099636218822740.
  • 13. Zhu C, Li J, Clement M, Yi X, Rudd C, Liu X. The effect of intumescent mat on post-fire performance of carbon fibre reinforced composites. J Fire Sci. 2019;37(3):257-72. https://doi.org/10.1177/0734904119849395.
  • 14. Proença M, Garrido M, Correia JR, Gomes MG. Fire resistance behaviour of GFRP-polyurethane composite sandwich panels for building floors. Compos Part B Eng. 2021;224:109171. https://doi.org/10.1016/j.compositesb.2021.109171.
  • 15. Javaid A, Ashraf HT, Mustaghees M, Khalid A. Fire-retardant carbon/glass fabric-reinforced epoxy sandwich composites for structural applications. Polym Compos. 2021;42:45-56. https://doi.org/10.1002/pc.25806.
  • 16. Kim M, Choe J, Lee DG. Development of the fire-retardant sandwich structure using an aramid/glass hybrid composite and a phenolic foam-filled honeycomb. Compos Struct. 2016;158:227-34. https://doi.org/10.1016/j.compstruct.2016.09.029.
  • 17. Huang JQ, Xu YY, Huang H, Dai JG. Structural behavior of FRP connector enabled precast geopolymer concrete sandwich panels subjected to one-side fire exposure. Fire Saf J. 2022;128:103524. https://doi.org/10.1016/j.firesaf.2022.103524.
  • 18. Greepala V, Nimityongskul P. Structural integrity of ferrocement panels exposed to fire. Cem Concr Compos. 2008;30:419-30. https://doi.org/10.1016/j.cemconcomp.2007.08.007.
  • 19. Zhang L, Bai Y, Qi Y, Fang H, Wu B. Post-fire mechanical performance of modular GFRP multicellular slabs with prefabricated fire resistant panels. Compos Part B Eng. 2018;143:55-67. https://doi.org/10.1016/j.compositesb.2018.01.034.
  • 20. Kumar SA, Ahmed KS. Flexural behavior of stiffened syntactic foam core sandwich composites. J Sandw Struct Mater. 2014;16(2):195–209. https://doi.org/10.1177/1099636213512498.
  • 21. Valenza A, Fiore V, Calabrese L. Three-point flexural behaviour of GFRP sandwich composites: a failure map. Adv Compos Mater. 2010;19:79-90. https://doi.org/10.1163/092430409X12530067339280.
  • 22. Chen Z, Yan N, Smith G, Deng J. Investigation of flexural creep of kraft paper honeycomb core sandwich panels using the finite element method. Wood Fiber Sci. 2012;44:374-83. https://wfs.swst.org/index.php/wfs/article/view/239.
  • 23. NFPA 285-2019. Standard fire test method for evaluation of fire propagation characteristics of exterior non-loadbearing wall assemblies containing combustible components. Massachusetts: The National Fire Protection Association, 2019. https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codesand-standards/detail?code=285.
  • 24. ASTM D7249/D7249M-20. Standard Test Method for Facesheet Properties of Sandwich Constructions by Long Beam Flexure. West Conshohocken: ASTM International, 2020. https://www.astm.org/d7249_d7249m-20.html.
  • 25. Beyler C, Hunt S, Lqbal N, Williams FA. Computer model of upward flame spread on vertical surfaces. Fire Saf Sci. 1997;5:297-308. https://doi.org/10.3801/IAFSS.FSS.5-297.
  • 26. Ding YM, Wang CJ, Lu SX. Large eddy simulation of fire spread. Procedia Eng. 2014;71:537-43. https://doi.org/10.1016/j.proeng.2014.04.077.
  • 27. Fan MH. Research on thermal response of composite laminates in fire. Master Dissertation, Civil Aviation University of China, Tianjin, China, 2019.
  • 28. Cha X. Insulated sandwich panels with metal faces for construction. Beijing: China Architecture & Building Press; 2011.
  • 29. Anjang A, Chevali VS, Lattimer BY, Case SW, Feih S, Mouritz AP. Post-fire mechanical properties of sandwich composite structures. Compos Struct. 2015;132:1019-28. https://doi.org/10.1016/j.compstruct.2015.07.009.
  • 30. Chen Z, Lu J, Liu H. Experimental investigation on mechanical properties of structural aluminum alloys after single and multiple fire exposure. J Build Struct. 2017;38:149-74. https://doi.org/10.14006/j.jzjgxb.2017.04.016.
  • 31. Liu H, Zhou Y, Xu X, Chen Z. Research on residual mechanical properties of post-fire 6061-T6 aluminum alloy extruded profiles. Spat Struct. 2018;24:75-82. https://doi.org/10.13849/j.issn.1006-6578.2018.03.075.
  • 32. Pan L, Jiao S, Du X. The relation between linear expansion coefficient and yang’s modulus of alloy materials and temperature at high temperature. J Nat Sci Hunan Norm Univ. 2000;23:47-51. https://t.cnki.net/kcms/detail?v=H_jYNn3eNfeUrOC-atHrwvXro9n5sTR7dBqTe1s-dfgvW-DrtSzDKmth3A2vk2-Pufsa2bptY9u1oBT4CvUfFjcnCTbJzfloeQcXVTa8keD10oNVApkzfQ==&uniplatform=NZKPT.
  • 33. Hibbeler RC. Mechanics of materials. New Jersey: Prentice Hall; 1996.
  • 34. Wang CM. Frequency relationship between levinson plates and classical thin plates. Mech Res Commun. 1999;26:687-92. https://doi.org/10.1016/S0093-6413(99)00079-8.
  • 35. Harper CA. Handbook of plastics, elastomers, and composites. New York: McGraw-Hill; 1999.
  • 36. Allen HG. Analysis and design of structural sandwich panels. Oxford: Pergamon Press; 1969.
  • 37. Institute of Mechanics, Chinese Academy of Sciences. Bending, stabilization and vibration of laminated shells. Beijing: Science Press; 1977.
  • 38. Wu F, Yao WX. A fatigue damage model of composite materials. Int J Fatigue. 2010;32:134-8. https://doi.org/10.1016/j.ijfatigue.2009.02.027.
  • 39. Davies JM, Heselius L. European recommandations for sandwich panels. Rotterdam: International Council for Building (CIB); 2000.
  • 40. BS EN 14509-2007. Self-supporting double skin metal faced insulating panels. Brussels: European Committee for Standardization; 2007.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3e499d3b-1576-4748-87d9-892ff1224717
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.