Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 46, nr 1 | 57--64
Tytuł artykułu

Mechanical analysis and numerical simulation of modified bone cements in the hip joint alloplasty

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper aims at verifying the stress values in bone-cement-implant system during human movement cycle and determining the amount of bone cement admixture which induces a drop in mechanical properties to acceptable level. Design/methodology/approach: In the first place, mechanical tests of modified cements were carried out. These tests are a basis for mathematical description of mechanical properties which will be used during numerical simulations. Numerical simulations were carried out using the geometry obtained by computer tomography. Findings: A drop in mechanical properties induced by modification depends on admixture size. During movement, cement bond is affected by considerable forces. These forces operate cyclically, i.e. momentarily (when setting a foot on the ground) within the elastic range of examined material. From the point of view of mechanical parameters, an optimum admixture of the aqueous solution of biologically active modifying agent is that inducing porosity at a level of 8%. Research limitations/implications: The paper constitutes a beginning of examinations on modified cement junctures which may be expanded in future by testing the dynamics basing on the analysis of fatigue strength. Practical implications: Modifying agent amount was determined and verified that does not induce a decrease in the bending strength and the longitudinal modulus of elasticity during bending below the level specified in ISO 5833 standard. Originality/value: Modification of cement with aqueous solution of salmon calcitionin, as well as examination and verification of the effect of admixture on mechanical properties.
Wydawca

Rocznik
Strony
57--64
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Institute of Materials Science and Engineering, West Pomeranian University of Technology, Al. Piastów 19, 70-310 Szczecin, Poland, jnowacki@zut.edu.pl
autor
  • Institute of Materials Science and Engineering, West Pomeranian University of Technology, Al. Piastów 19, 70-310 Szczecin, Poland
Bibliografia
  • [1] A.S. Baker, L.W. Greenham, Release of gentamicin from acrylic bone cement. Elution and diffusion studies, Journal of Bone and Joint Surgery 70 (1988) 1551-1557.
  • [2] A. Balin, Mechanical and material conditions of the artificial hip joint stability and durability endoprosthesoplasty - study of the problem, Materials Engineering 2 (1998) 44-52.
  • [3] J. Kubacki, T. Gazdzik, Endoprosthesoplasty of the hip-problems, Biomaterials Engineering 2 (1998) 12-16.
  • [4] M. Žitňanský, L’. Čaplovič, E. Rehák, F. Makai, Investigation and implantation of endoprosthesis in biological experiment on animals, Journal of Achievements in Materials and Manufacturing Engineering 24/1 (2007) 146-152.
  • [5] A.M. Gatti, D. Zaffe, Bioactive glasses and chemical bond, Biomaterials - Hard and tissue repair and replacement, N-H, 1992.
  • [6] J.F. Osborn, The reaction of bone tissue to hydroksyapatite ceramics coatings, Biomaterials- Hard and Tissue Repair and Replacement, N-H, 1992.
  • [7] M. Balazic, J. Kopac, Improvements of medical implants based on modern materials and new technologies, Journal of Achievements in Materials and Manufacturing Engineering 25/2 (2007) 31-34.
  • [8] M. Boujelbene, P. Abellard, E. Bayraktar, S. Torbaty, Study of the milling strategy on the tool life and the surface quality for knee prostheses, Journal of Achievements in Materials and Manufacturing Engineering 31/2 (2008) 610-615.
  • [9] N. Greene, P.D. Holtom, C.A. Warren, R.L. Ressler, L. Shepherd, E.J. McPherson, M.J. Patzakis, In vitro elution of tobramycin and vancomycin polymethylacrylate beads and spacers from Simplex and Palacos, The American Journal of Orthopedics 27 (1998) 201-205.
  • [10] P.J. Herzwurm, S.L. Simpson, S. Duffin, S.G. Oswald, F.R. Ebert, Thigh pain and total hip arthoplasty, Clinical Orthopaedics and Related Research 336 (1997) 156-161.
  • [11] A. Nzihou, L. Attias, P. Sharrock, A. Ricard, A rheological, thermal, and mechanical study of bone cement - from a suspension to a solid biomaterial, Powder Technology 99 (1998) 56-6.
  • [12] I. Knets, V. Krilova, R. Cimdins, L. Berzina, V. Vitins, Stiffness and strength of composite acrylic bone cements, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 135-138.
  • [13] A. Balin, G. Junak, Low-cycle fatigue of surgical cements, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 211-214.
  • [14] M.K.D. Nicholas, M.G.J. Waters, K.M. Holford, G. Adusei, Analysis of rheological properties of bone cements, Journal of Materials Science: Materials in Medicine 18 (2007) 1407-1412.
  • [15] B.A. Masri, C.P. Duncan, C.P. Beauchamp, Effect of varying surface patterns on antibiotic elution from antibiotic loaded bone cement, Journal of Arthroplasty Arthroscopic Surgery 10 (1995) 453-459.
  • [16] J. Okrajni, M. Plaza, S. Ziemba, Computer modelling of the heat flow in surgical cement during endoprosthesoplasty, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 311-314.
  • [17] A. Krauze, W. Kajzer, J. Marciniak, Biochemical characteristic of bone nail - femur system using MES method, Proceedings of the 12th Scientific International Conference “Achievements in Mechanical and Materials Engineering” AMME’2003, Gliwice, 2003, 80-82.
  • [18] N. Passuti, F. Gouin, Antibiotic-loaded bone cement in orthopedic surgery, Joint Bone Spine 70 (2003) 169-174.
  • [19] F. Pauwels, Der Schenkelhalsbruch, Stuttgart Enke, 1935.
  • [20] M. Rocca, M. Fini, T. Greggi, P. Parisini, A. Carpi, R. Giardio, Biomaterials in spinal fixation. An experimental animal study to improve the performance, The International Journal of Artifical Organs 12 (2000) 824-830.
  • [21] N.J. Dunne, J.F. Orr, Influence of mixing techniques on the physical properties of acrylic bone cement, Biomaterials 22 (2001) 1819-1826.
  • [22] Standard ASTM F136-98, Standard Specification for Wrought Titanium-6 Aluminum-4 Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401), USA, 1998.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3dde36ac-dee5-4011-8384-7883ed7ac80a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.