Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | No. 3 | 202--224
Tytuł artykułu

Economic potential of recovery and recycling of silicone photovoltaics cells and non-ferrous metals as part of the transition towards a circular economy

Treść / Zawartość
Warianty tytułu
PL
Ekonomiczny potencjał odzysku i recyklingu krzemowych ogniw PV i metali nieżelaznych jako element transformacji w kierunku gospodarki o obiegu zamkniętym
Języki publikacji
EN
Abstrakty
EN
The article aims to assess the economic recovery and recycling of silicon PV cells and the non-ferrous metals contained in them, taking into account the analysis of costs, benefits and factors: legal, ecological, technical, technological and social. The research methodology was based on statistical measures related to the analysis of PV structure and changes in individual years of operation. For the designated structures, the current state of knowledge and legal status in the field of recycling methods of exploited PV installations were defined. In addition, an analysis of the Polish market about selected developed countries concerning the recycling sector was performed, and the identification of key factors and barriers to the development of the analysed sector was presented. On this basis, the possibilities and directions of support for the PV recycling sector were indicated, and a SWOT analysis of possible methods of its support was made.
PL
Celem artykułu jest ocena ekonomiczna odzysku i recyklingu krzemowych ogniw PV i zawartych w nich metali nieżelaznych z uwzględnieniem analizy kosztów, korzyści i czynników: prawnych, ekologicznych, techniczno-technologicznych i społecznych. Metodologię badań oparto na miarach statystycznych związanych z analizą struktury i zmian PV w poszczególnych latach ich eksploatacji. Dla wyznaczonych struktur określono aktualny stan wiedzy i stan prawny w zakresie metod recyklingu wyeksploatowanych instalacji PV. Ponadto wykonano analizę rynku polskiego względem wybranych krajów rozwiniętych odnośnie sektora recyklingu, przedstawiono identyfikację kluczowych czynników i barier rozwoju analizowanego sektora. Na tej podstawie wskazano możliwości, kierunki wsparcia sektora recyklingu PV i dokonano analizy SWOT możliwych metod jego wsparcia.
Wydawca

Rocznik
Tom
Strony
202--224
Opis fizyczny
Bibliogr. 41 poz., tab.
Twórcy
  • AGH University of Krakow, Faculty of Management, Żołnierska Street 47, 71-210 Szczecin, Poland, niekurz@agh.edu.p
  • University of Technology in Szczecin, Faculty of the Economics West Pomeranian, Department of Regional and European Studies
  • University of Technology in Szczecin, Faculty of the Economics West Pomeranian, Department of Regional and European Studies , wojciech.lewicki@zut.edu.pl
Bibliografia
  • Azeumo, M. F., Germana, C., Ippolito, N. M., Franco, M., Luigi, P., & Settimio, S. (2019). Photovoltaic module recycling, a physical and a chemical recovery process. Solar Energy Materials and Solar Cells, 193, 314-319. https://doi.org/10.1016/j.solmat.2019.01.035
  • Cerchier, P., Brunelli, K., Pezzato, L., Audoin, C., Rakotoniaina, J. P., Sessa, T., Tammaro, M., Sabia, G., Attanasio, A., Forte, C., Nisi, A., Suitner, H., & Dabala, M. (2021). Innovative recycling of end-of-life silicon PV panels: Resielp. Detritus, 16, 41-47. https://doi.org/10.31025/2611-4135/2021.15118
  • Chen, W. S., Chen, Y. J., Lee, C. H., Cheng, Y. J., Chen, Y. A., Liu, F. W., Wang, Y. C., & Chueh, Y. L. (2012). Recovery of Valuable Materials from the Waste Crystalline-Silicon Photovoltaic Cell and Ribbon. Processes, 9, 712. https://doi.org/10.3390/pr9040712
  • Chrzanowski, M., & Zawada, P. (2023). Fraction Separation Potential in the Recycling Process of Photovoltaic Panels at the Installation Site – A Conceptual Framework from an Economic and Ecological Safety Perspective. Energies, 16, 2084. https://doi.org/10.3390/en16052084
  • D’Adamo, I., Miliacca, M., & Rosa, P. (2017). Economic Feasibility for Recycling of Waste Crystalline Silicon Photovoltaic Modules. International Journal of Photoenergy, 4184676. https://doi.org/10.1155/2017/4184676
  • Fiandra, V., Sanino, L., Andreozzi, C., Corcelli, F., & Graditi, G. (2019). Silicon photovoltaic modules at end-of-life: Removal of polymers layers and separation of materials. Waste Manag, 87, 97-107. https://doi:10.1016/j.wasman.2019.02.004
  • Fuentes, M., Vivar, M., de la Casa, J., & Aguilera, J. (2018). An experimental comparison between commercial hybrid PV-T and simple PV systems intended for BIPV. Renewable and Sustainable Energy Reviews, 93, 110-120. https://doi.org/10.1016/j.rser.2018.05.021
  • Glass, J. R., Kruse, G. H., & Miller, S. A. (2015). Socioeconomic considerations of the commercial weathervane scallop fishery off Alaska using SWOT analysis. Ocean & Coastal Management, 105, 154-165. https://doi.org/10.1016/j.ocecoaman. 2015.01.005
  • Granata, G., Pagnanelli, F., Moscardini, E., Havlik, T., & Toro, L. (2014). Recycling of photovoltaic panels by physics operations. Solar Energy Materials and Solar Cells, 123, 239-248. https://doi.org/10.1016/j.solmat.2014.01.012
  • Green, M. A. (2015). The Passivated Emitter and Rear Cell (PERC): From conception to mass production. Solar Energy Materials and Solar Cells, 143, 190-197. https://doi.org/10.1016/j.solmat.2015.06.055
  • Habisreutinger, S. N., Leijtens, T., Eperon, G. E., Stranks, S. D., Nicholas, R. J., & Snaith, H. J. (2014). Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Letters, 14(10), 5561-5568. https://doi.org/10.1021/nl501982b
  • Han, Q., Gao, Y., Su, T., Qin, J., Wang, C., Qu, Z., & Wang, X. (2023). Hydrometallurgy recovery of copper, aluminum and silver from spent solar panels. Journal of Environmental Chemical Engineering, 11(1), 109236. https://doi.org/10.1016/j.jece.2022.109236
  • Huang, W. H., Shin, W. J., Wang, L., Sun, W. C., & Tao, M. (2017). Strategy and technology to recycle wafer-silicon solar modules. Solar Energy, 144, 22-31. https://doi.org/10.1016/j.solener.2017.01.001
  • IRENA. (2023). End-of-life management: Solar Photovoltaic Panels. https://www.irena.org/publications/2016/Jun/End-of-life-management-Solar-PhotovoltaicPanels
  • Kang, S., Yoo, S., Lee, J., Boo, B., & Ryu, H. (2012). Experimental investigations for recycling of silicon and glass from waste photovoltaic modules. Renewable Energy, 47, 152-159. https://doi.org/10.1016/j.renene.2012.04.030
  • Kenisarin, M. M. (2014). Thermophysical properties of some organic phase change materials for latent heat storage: A review. Solar Energy, 107, 553-575. https://doi.org/10.1016/j.solener.2014.05.001
  • Kreiger, M. A., Shonnard, D. R., & Pearce, J. M. (2013). Life cycle analysis of silane recycling in amorphous silicon-based solar photovoltaic manufacturing. Resources, Conservation and Recycling, 70, 44-49. https://doi.org/10.1016/j.resconrec.2012.10.002
  • Ma, T., Li, Z., & Zhao, J. (2019). Photovoltaic panel integrated with phase change materials (PV-PCM): Technology overview and materials selection. Renewable and Sustainable Energy Reviews, 116, 109406. https://doi.org/10.1016/j.rser.2019.109406
  • Mahmoudi, S., Huda, N., & Behnia, M. (2019). Photovoltaic waste assessment: Forecasting and screening of emerging waste in Australia. Resources Conservation and Recycling, 146(6), 192-205. https://doi.org/10.1016/j.resconrec.2019.03.039
  • Marwede, M., Berger, W., Schlummer, M., Mäurer, A., & Reller, A. (2013). Recycling paths for thin-film chalcogenide photovoltaic waste–Current feasible processes. Renewable Energy, 55, 220-229. https://doi.org/10.1016/j.renene.2012.12.038
  • Money.pl. (2023). Notowania surowców. https://www.money.pl/gielda/surowce/ (in
  • Polish). Moon, G., & Yoo, K. (2017). Separation of Cu, Sn, and Pb from the photovoltaic ribbon by hydrochloric acid leaching with stannic ion followed by solvent extraction. Hydrometallurgy, 171, 123-127. https://doi.org/10.1016/j.hydromet.2017.05.003
  • Nazir, H., Batool, M., Osorio, F. J. B., Isaza-Ruiz, M., Xu, X., Vignarooban, K., Phelan, P., & Kannan, A. M. (2019). Recent developments in phase change materials for energy storage applications: A review. International Journal of Heat and Mass Transfer, 129, 491-523. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126
  • Niekurzak, M., Lewicki, W., Coban, H. H, & Brelik, A. (2023). Conceptual Design of a Semi-Automatic Process Line for Recycling Photovoltaic Panels as a Way to Ecological Sustainable Production. Sustainability, 15(3), 2822. https://doi.org/10. 3390/su15032822
  • Ostrowski, P. (2010). Procesy termiczne i chemiczne w recyklingu ogniw i modułów fotowoltaicznych z krystalicznego krzemu [Doctoral dissertation]. Politechnika Gdańska. (in Polish).
  • Pagnanelli, F., Moscardini, E., Granata, G., Atia, T. A., Altimari, P., Havlik, T., & Toro, L. (2017). Physical and chemical treatment of end of life panels: An integrated automatic approach viable for different photovoltaic technologies. Waste Management, 59, 422-431. https://doi.org/10.1016/j.wasman.2016.11.011
  • Pandey, A. K., Hossain, M. S., Tyagi, V. V., Abd Rahim, N., Jeyraj, A., Selvaraj, L., & Sari, A. (2018). Novel approaches and recent developments on potential applications of phase change materials in solar energy. Renewable and Sustainable Energy Reviews, 82, 281-323. https://doi.org/10.1016/j.rser.2017.09.043
  • Polman, A., Knight, M., Garnete, E. C., Ehrler, B., & Sinke, W. C. (2016). Photovoltaic materials: Present efficiencies and future challenges. Science, 352, aad4424. https://doi.org/10.1126/science.aad4424
  • Romel, M., Kabir, G., & Ng, K. T. W. (2023). Analysis of barriers to photovoltaic waste management to achieve the net-zero goal of Canada. Environmental Science and Pollution Research, 30, 85772-85791. https://doi.org/10.1007/s11356-023- 28313-2
  • Saliba, M., Matsui, T., Seo, J., Domanski, K., Correa-Baena, J., Nazeeruddin, M. K., Zakeeruddin, S. M., Tress, W., Abate, A., Hagfeldt, A., & Gratzel, M. (2016). Caesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy & Environmental Science, 9(6), 1989-1997. https://doi.org/10.1039/C5EE03874J
  • Savvilotidou, V., Antoniou, A., & Gidarakos, E. (2017). Toxicity assessment and feasible recycling process for amorphous silicon and CIS waste photovoltaic panels. Waste Management, 59, 394-402. https://doi.org/10.1016/j.wasman.2016.10.003
  • Selvi, A., Rajasekar, A., Theerthagiri, J., Ananthaselvam, A., Sathishkumar, K., Madhavan, J., & Rahman, P. K. (2019). Integrated Remediation Processes Toward Heavy Metal Removal/Recovery from Various Environments: A Review. Frontiers in Environmental Science, 7, 66. https://doi.org/10.3389/fenvs.2019.00066
  • Shalini, S., Balasundaraprabhu, R., Kumar, T. S., Prabavathy, N., Senthilarasu, S., & Prasanna, S. (2016). Status and outlook of sensitizers/dyes used in dye-sensitized solar cells (DSSC): A review. International Journal of Energy Research, 40(10), 1303-1320. https://doi.org/10.1002/er.3538
  • Sultan, S. M., & Efzan, E. (2018). Review on recent Photovoltaic/Thermal (PV/T) technology advances and applications. Solar Energy, 173, 939-954. https://doi.org/10.1016/j.solener.2018.08.032
  • Szkudlarek, Ł. (2019). Recykling wyeksploatowanych komponentów technicznych odnawialnych źródeł energii oraz akumulatorów pojazdów elektrycznych jako element transformacji w kierunku gospodarki o obiegu zamkniętym. https://www. ewaluacja.gov.pl/strony/badania-i-analizy/wyniki-badan-ewaluacyjnych/badania-ewaluacyjne/recykling-wyeksploatowanych-komponentow-technicznychodnawialnych-zrodel-energii-oraz-akumulatorow-pojazdow-elektrycznych-jako-element-transformacji-w-kierunku-gospo/ (in Polish).
  • Tao, J., & Yu, S. (2015). Review on feasible recycling pathways and technologies of solar photovoltaic modules. Solar Energy Materials and Solar Cells, 141, 108-124. https://doi.org/10.1016/j.solmat.2015.05.005
  • Trivedi, H., Meshram, A., & Gupta, R. (2023). Recycling of photovoltaic modules for recovery and repurposing of materials. Journal of Environmental Chemical Engineering, 11(2), 109501.
  • Umair, M. M., Zhang, Y., Iqbal, K., Zhang, S., & Tang, B. (2019). Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage: A review. Applied Energy, 235, 846-873. https://doi.org/10.1016/j.apenergy.2018.11.017
  • Xu, Y., Li, J., Tan, Q., Peters, A. L., & Yang, C. (2018). Global Status of Recycling Waste Solar Panels: A Review. Waste Management, 75, 450-458. https://doi.org/10.1016/j.wasman.2018.01.036
  • Yi, Y. K., Kim, H. S., Tran, T., Hong, S. K., & Kim, M. J. (2014). Recovering valuable metals from recycled photovoltaic modules. Journal of the Air & Waste Management Association, 64, 797-807. https://doi.org/10.1080/10962247.2014.891540
  • Yin, W., Shi, T., & Yan, Y. (2014). Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance. Advanced Materials, 26(27), 4653-4658. https://doi.org/10.1002/adma.201306281
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3dc50490-0930-4dc9-bbbb-9f9f58f97cf1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.