Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 151, nr 1/4 | 1--48
Tytuł artykułu

A Comprehensive Survey on Fractional Fourier Transform

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Fractional Fourier transform (FRFT) is a relatively novel linear transforms that is a generalization of conventional Fourier transform (FT). FRFT can transform a particular signal to a unified time-frequency domain. In this survey, we try to present a comprehensive investigation of FRFT. Firstly, we provided definition of FRFT and its three discrete versions (weighted-type, sampling-type, and eigendecomposition-type). Secondly, we offered a comprehensive theoretical research and technological studies that consisted of hardware implementation, software implementation, and optimal order selection. Thirdly, we presented a survey on applications of FRFT to following fields: communication, encryption, optimal engineering, radiology, remote sensing, fractional calculus, fractional wavelet transform, pseudo-differential operator, pattern recognition, and image processing. It is hoped that this survey would be beneficial for the researchers studying on FRFT.
Wydawca

Rocznik
Strony
1--48
Opis fizyczny
Bibliogr. 284 poz., tab., wykr.
Twórcy
autor
  • School of Computer Science and Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China
autor
  • School of Computer Science and Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China, wangshuihua@njnu.edu.cn
autor
  • Jiangsu Key Laboratory of 3D, Printing Equipment and Manufacturing, Nanjing, Jiangsu 210042, China
autor
  • Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
autor
  • School of Natural Sciences and Mathematics, Shepherd University, Shepherdstown, WV 25443, USA
autor
  • Department of Electrical Engineering, The City College of New York, CUNY, New York, NY 10031, USA
autor
  • Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
Bibliografia
  • [1] Wiener N. Hermitian Polynomials and Fourier Analysis. J. Mathematics and Physics, 1929; 8: 70-73.
  • [2] Condon EU. Immersion of the Fourier Transform in a Continuous Group of Functional Transformations. Proceedings of the National Academy of Sciences of the United States of America, 1937; 23 (3): 158—164.
  • [3] NAMIAS V. The Fractional Order Fourier Transform and its Application to Quantum Mechanics. IMA Journal of Applied Mathematics, 1980; 25 (3): 241-265. doi: 10.1093/imamat/25.3.241.
  • [4] McBRIDE AC, and KERR FH. On Namias’s Fractional Fourier Transforms. IMA Journal of Applied Mathematics, 1987; 39 (2): 159-175. doi: 10.1093/imamat/39.2.159.
  • [5] Mendlovic D, and Ozaktas HM. Fractional Fourier transforms and their optical implementation: I. Journal of the Optical Society of America A, 1993; 10 (9): 1875-1881. doi: 10.1364/JOSAA.10.001875.
  • [6] Almeida LB. The fractional Fourier transform and time-frequency representations. IEEE Transactions on Signal Processing, 1994; 42 (11): 3084-3091. doi: 10.1109/78.330368.
  • [7] Ozaktas HM, et al. Filtering in fractional Fourier domains and their relation to chirp transforms, in Proceedings of 7th Mediterranean. 1994, pp. 77-79. doi: 10.1109/MELCON.1994.381140.
  • [8] Zayed AI. On the relationship between the Fourier and fractional Fourier transforms. IEEE Signal Processing Letters, 1996; 3 (12): 310-311. doi: 10.1109/97.544785.
  • [9] Cariolaro G, et al. A unified framework for the fractional Fourier transform. IEEE Transactions on Signal Processing, 1998; 46 (12): 3206-3219. doi: 10.1109/78.735297.
  • [10] Feng Z, et al. Adaptive harmonic fractional Fourier transform. IEEE Signal Processing Letters, 1999; 6(11): 281-283. doi: 10.1109/97.796288.
  • [11] Pei SC, et al. Discrete fractional Fourier transform based on orthogonal projections. IEEE Transactions on Signal Processing, 1999; 47 (5): 1335-1348. doi: 10.1109/78.757221.
  • [12] Shih CC. Fractionalization of Fourier transform. Optics Communications, 1995; 118 (5-6): 495-498. doi: 0030-4018(95)00268-D.
  • [13] Santhanam B, and McClellan JH. The discrete rotational Fourier transform. IEEE Transactions on Signal Processing, 1996; 44 (4): 994-998. doi: 10.1109/78.492554.
  • [14] Ozaktas HM, et al. Digital computation of the fractional Fourier transform. IEEE Transactions on Signal Processing, 1996; 44 (9): 2141-2150. doi: 10.1109/78.536672.
  • [15] Pei SC, and Yeh MH. Improved discrete fractional Fourier transform. Optics Letters, 1997; 22 (14): 1047-1049. doi: 10.1364/OL.22.001047.
  • [16] Dickinson BW, and Steiglitz K. Eigenvectors and functions of the discrete Fourier transform. IEEE Transactions on Acoustics, Speech and Signal Processing, 1982; 30 (1): 25-31. doi: 10.1109/TASSP.1982.1163843.
  • [17] Man’ko MA. Quasidistributions tomography, and fractional Fourier transform in signal analysis. Journal of Russian Laser Research, 2000; 21 (5): 411-437. doi: 10.1007/bf02508735.
  • [18] Alieva T, and Bastiaans MJ. On fractional Fourier transform moments. Ieee Signal Processing Letters 2000; 7 (11): 320-323. doi: 10.1109/97.873570.
  • [19] Sillitto W. Parameter diagrams for the fractional Fourier transform. Journal of Modern Optics, 2001; 48 (3): 459-492.
  • [20] Shinde S, and Gadre VM. An uncertainty principle for real signals in the fractional Fourier transform domain. IEEE Transactions on Signal Processing, 2001; 49 (11): 2545-2548. doi: 10.1109/78.960402.
  • [21] Bastiaans MJ, and Alieva T. Wigner distribution moments in fractional Fourier transform systems. Journal of the Optical Society of America a-Optics Image Science and Vision, 2002; 19 (9): 1763-1773. doi: 10.1364/josaa.19.001763.
  • [22] Alieva T, and Calvo ML. Importance of the phase and amplitude in the fractional Fourier domain. Journal of the Optical Society of America A, 2003; 20 (3): 533-541, doi: 10.1364/JOSAA.20.000533.
  • [23] Bandres MA, and Gutierrez-Vega JC. Ince-Gaussian series representation of the two-dimensional fractional Fourier transform. Optics Letters, 2005; 30 (5): 540-542, doi: 10.1364/ol.30.000540.
  • [24] Hu LY, and Fan HY. Quantum Optical Squeezing Transform for Generalizing Fractional Fourier Transform. Communications In Theoretical Physics, 2008; 50 (4): 951-954.
  • [25] Kumar S, et al. Analysis of Dirichlet and Generalized ’’Hamming” window functions in the fractional Fourier transform domains. Signal Processing, 2011; 91 (3): 600-606, doi: 10.1016/j.sigpro.2010.04-011.
  • [26] Hsue WL, and Pei SC. Rational-ordered discrete fractional fourier transform, in Proceedings of the 20th European Signal Processing Conference (Eusipco). 2012 pp. 2124-2127, ISBN: 2076-1465.
  • [27] Mohindru P, et al. An Improved Product Theorem for Fractional Fourier Transform. Proceedings of the National Academy of Sciences India Section a-Physical Sciences, 2012; 82 (4): 343-345. doi: 10.1007/s40010-012-0058-0.
  • [28] Shi J, et al. On uncertainty principle for signal concentrations with fractional Fourier transform. Signal Processing, 2012; 92 (12): 2830-2836. doi: 10.1016/j.sigpro.2012.04.008.
  • [29] Mohindru P, et al. Analysis of Chirp as windowing function through fractional Fourier transform. International Journal of Electronics, 2013; 100 (9): 1196-1206. doi: 10.1080/00207217.2012.743075.
  • [30] Singh K, et al. Caputo-Based Fractional Derivative in Fractional Fourier Transform Domain. Ieee Journal on Emerging and Selected Topics in Circuits and Systems, 2013; 3 (3): 330-337. doi: 10.1109/jetcas.2013.2272837.
  • [31] Shi J, et al. Generalized convolution theorem associated with fractional Fourier transform. Wireless Communications & Mobile Computing, 2014; 14 (13): 1340-1351. doi: 10.1002/wcm.2254.
  • [32] Ling BWK, et al. Mask operations in discrete fractional Fourier transform domains with nearly white real valued wide sense stationary output signals. Digital Signal Processing, 2014; 27: 57-68. doi: 10.1016/j.dsp.2014.01.004.
  • [33] Lang J, et al., The Generalized Weighted Fractional Fourier Transform and Its Application to Image Encryption. In: 2nd International Congress on Image and Signal Processing. 2009. Tianjin, P R CHINA: IEEE. pp. 3198-3202, ISBN: 978-1-4244-4130-3.
  • [34] Ran QW, et al., Sampling Analysis in Weighted Fractional Fourier Transform Domain, in International Joint Conference on Computational Sciences and Optimization. 2009. Los Alamitos: IEEE Computer Soc. pp. 878-881. doi: 10.1109/cso.2009.303. ISBN: 978-0-7695-3605-7.
  • [35] Mei L, et al., Research on the application of 4-weighted fractional Fourier transform in communication system. Science China-Information Sciences, 2010; 53 (6): 1251-1260. doi: 10.1007/s11432-010-0073-1.
  • [36] Li T, et al., Anti-interception Communication System based on Double Layers Weighted-type Fractional Fourier Transform. in 6th International Icest Conference on Communications and Networking in China. 2011; Harbin, CHINA: IEEE. pp. 88-92, ISBN: 978-l-4577-0101-6.
  • [37] Hui YT, et al., 4-weighted fractional Fourier transform over doubly selective channels and optimal order selecting algorithm. Electronics Letters, 2015; 51 (2): 177-178. doi: 10.1049/el.2014.2268.
  • [38] Sharma KK, and Joshi SD. Fractional Fourier Transform of bandlimited periodic signals and its sampling theorems. Optics Communications, 2005; 256 (4-6): 272-278. doi: 10.1016/j.optcom.2005.07.003.
  • [39] Tao R, et al. Sampling and sampling rate conversion of band limited signals in the fractional Fourier transform domain. Ieee Transactions on Signal Processing, 2008; 56 (1): 158-171. doi: 10.1109/tsp.2007.901666.
  • [40] Zhang F, et al. Multi-channel sampling theorems for band-limited signals with fractional Fourier transform. Science in China Series E-Technological Sciences, 2008; 51 (6): 790-802. doi: 10.1007/s11431-008-0087-8.
  • [41] Wei DY, et al. Generalized Sampling Expansion for Bandlimited Signals Associated With the Fractional Fourier Transform. Ieee Signal Processing Letters, 2010; 17 (6): 595-598. doi: 10.1109/lsp.2010.2048642.
  • [42] Ran QW, et al. Sampling of Bandlimited Signals in Fractional Fourier Transform Domain. Circuits Systems and Signal Processing, 2010; 29 (3): 459-467. doi: 10.1007/s00034-010-9155-y.
  • [43] Zhang QY. A Note on Operator Sampling and Fractional Fourier Transform. Mathematical Problems in Engineering, 2011, Article ID: 303460. doi: 10.1155/2011/303460.
  • [44] Ozaktas HM, et al. Fundamental structure of Fresnel diffraction: natural sampling grid and the fractional Fourier transform. Optics Letters, 2011; 36 (13): 2524-2526.
  • [45] Wei DY, et al. Sampling of fractional bandlimited signals associated with fractional Fourier transform. Optik, 2012; 123 (2): 137-139. doi: 10.1016/j.ijleo.2011.02.024.
  • [46] Li BZ, and Xu TZ. Parseval Relationship of Samples in the Fractional Fourier Transform Domain. Journal of Applied Mathematics, 2012, Article ID: 428142. doi: 10.1155/2012/428142.
  • [47] Lu MF, el al. Analysis of Actual Sampled Data System in Fractional Fourier Transform Domain, in Second International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC). 2012; Harbin, China: IEEE Comp Soc. pp. 1188-1191, doi: 10.1109/imccc.2012.279, ISBN: 978-0-7695-4935-4.
  • [48] Bhandari A, and Zayed AI Shift-Invariant and Sampling Spaces Associated With the Fractional Fourier Transform Domain. Ieee Transactions on Signal Processing, 2012; 60 (4): 1627-1637. doi: 10.1109/tsp.2011.2177260.
  • [49] Shi J, et al. A sampling theorem for the fractional Fourier transform without band-limiting constraints. Signal Processing, 2014; 98: 158-165. doi: 10.1016/j.sigpro.2013.11.026.
  • [50] Liu XP, et al. Sampling expansion for irregularly sampled signals in fractional Fourier transform domain. Digital Signal Processing, 2014; 34: 74-81. doi: 10.1016/j.dsp.2014.08.004.
  • [51] Liu XP, et al. A general framework for sampling and reconstruction in function spaces associated with fractional Fourier transform. Signal Processing, 2015; 107: 319-326. doi: 10.1016/j.sigpro.2014.04.009.
  • [52] Pei SC, et al. Discrete fractional Hartley and Fourier transforms. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 1998; 45 (6): 665-675, doi: 10.1109/82.686685.
  • [53] Pei SC, et al. A new discrete fractional Fourier transform based on constrained eigendecomposition of DFT matrix by Lagrange multiplier method. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 1999; 46 (9): 1240-1245. doi: 10.1109/82.793715.
  • [54] Candan C, et al. The discrete fractional Fourier transform. Ieee Transactions on Signal Processing, 2000; 48 (5): 1329-1337. doi: 10.1109/78.839980.
  • [55] Barker L, et al. The discrete harmonic oscillator, Harper’s equation, and the discrete fractional Fourier transform. Journal of Physics a-Mathematical and General, 2000: 33 (11): 2209-2222. doi: 10.1088/0305-4470/33/11/304.
  • [56] Fan HY, and Fan Y. New eigenmodes of propagation in quadratic graded index media and complex fractional Fourier transform. Communications in Theoretical Physics, 2003; 39 (1): 97-100.
  • [57] Vargas-Rubio JG, and B. Santhanam, On the multiangle centered discrete fractional Fourier transform. Ieee Signal Processing Letters, 2005; 12 (4): 273-276. doi: 10.1109/lsp.2005.843762.
  • [58] Pei SC, et al. Discrete fractional Fourier transform based on new nearly tridiagonal commuting matrices. IEEE Transactions on Signal Processing, 2006; 54 (10): 3815-3828. doi: 10.1109/tsp.2006.879313.
  • [59] Pei SC, and Ding JJ. Eigenfunctions of Fourier and fractional fourier transforms with complex offsets and parameters. Ieee Transactions on Circuits and Systems I-Regular Papers, 2007; 54 (7): 1599-1611. doi: 10.1109/tcs1.2007.900182.
  • [60] Candan C. On higher order approximations for hermite-gaussian functions and discrete fractional Fourier transforms. Ieee Signal Processing Letters, 2007; 14 (10): 699-702. doi: 10.1109/lsp.2007.898354.
  • [61] Hanna MT, et al. Discrete fractional Fourier transform based on the eigenvectors of tridiagonal and nearly tridiagonal matrices. Digital Signal Processing, 2008; 18 (5): 709-727. doi: 10.1016/j.dsp.2008.05.003.
  • [62] Fan HY, et al. Eigenfunctions of the complex fractional Fourier transform obtained in the context of quantum optics. Journal of the Optical Society of America a-Optics Image Science and Vision, 2008; 25 (4): 974-978. doi: 10.1364/josaa.25.000974.
  • [63] Serbes A, and Durak-Ata L. The discrete fractional Fourier transform based on the DFT matrix. Signal Processing, 2011; 91 (3): 571-581. doi: 10.1016/j.sigpro.2010.05.007.
  • [64] Hsue WL, et al. Efficient discrete fractional hirschman optimal transform and its application, in IEEE International Conference on Acoustics, Speech, and Signal Processing. 2011, Prague, CZECH REPUBLIC: IEEE. pp. 3604-3607, ISBN: 1520-6149.
  • [65] Lima JB, and de Souza RMC. The fractional Fourier transform over finite fields. Signal Processing, 2012; 92 (2): 465-476. doi: 10.1016/j.sigpro.2011.08.010.
  • [66] Pei SC, and Ding JJ. Closed-form discrete fractional and affine Fourier transforms. Signal Processing, IEEE Transactions on, 2000; 48 (5): 1338-1353. doi: 10.1109/78.839981.
  • [67] Pei SC, and Ding JJ. Two-dimensional affine generalized fractional Fourier transform. Ieee Transactions Processing, 2001; 49 (4): 878-897.
  • [68] Pei SC, and Yeh MH. The discrete fractional cosine and sine transforms. Ieee Transactions on Signal Processing, 2001;49 (6): 1198-1207.
  • [69] HY and Jiang NQ. On the entangled fractional fourier transform in tripartite entangled state representation. Communications in Theoretical Physics, 2003; 40 (1): 39-44.
  • [70] Ran QW, et al. High order generalized permutational fractional Fourier transforms. Chinese Physics, 2004; 13 (2): 178-186.
  • [71] Xu GL, et al. Fractional quaternion Fourier transform, convolution and correlation. Signal Processing, 2008; 88 (10): 2511-2517. doi: 10.1016/j.sigpro.2008.04.012.
  • [72] Munoz CA, et al. Fractional discrete q-Fourier transforms. Journal of Physics a-Mathematical and Theoretical, 2009; 42 (35): 12, Article ID: 355212, doi: 10.1088/1751-8113/42/35/355212.
  • [73] Tao R, et al. Short-Time Fractional Fourier Transform and Its Applications. Ieee Transactions on Signal Processing, 2010; 58 (5): 2568-2580. doi: 10.1109/tsp.2009.2028095.
  • [74] Sharma KK. Fractional Laplace transform. Signal Image and Video Processing, 2010; 4 (3): 377-379. doi: 1007/s11760-009-0127-2.
  • [75] Ortigueira MD. Comments on ’’The fractional Laplace transform”. Signal Image and Video Processing, 2014; 8 (3): 489-490. doi: 10.1007/s11760-012-0360-y.
  • [76] Chen H, et al. Spectral decomposition of seismic signal based on fractional Gabor transform and its applications. Chinese Journal of Geophysics-Chinese Edition, 2011; 54 (3): 867-873. doi: 10.3969/j.issn.0001-5733.2011.03.028.
  • [77] Pei SC, et al. The generalized fractional fourier transform, in International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2012; Kyoto, JAPAN: IEEE. pp. 3705-3708, ISBN: 978-1-4673-0046-9.
  • [78] Wei DY, and Li YM. Different forms of Plancherel theorem for fractional quaternion Fourier transform. Optik, 2013; 124 (24): 6999-7002. doi: 10.1016/j.ijleo.2013.05.163.
  • [79] Zheng LY, et al. CAF-FrFT: A center-affine-filter with fractional Fourier transform to reduce the crossterms of Wigner distribution. Signal Processing, 2014; 94: 330-338. doi: 10.1016/j.sigpro.2013.06.031.
  • [80] Liu SH, et al. Sparse Discrete Fractional Fourier Transform and Its Applications. IEEE Transactions on Signal Processing, 2014; 62 (24): 6582-6595. doi: 10.1109/tsp.2014.2366719.
  • [81] Tian L, and Peng ZM. Determining the optimal order of fractional Gabor transform based on kurtosis maximization and its application. Journal of Applied Geophysics, 2014; 108: 152-158. doi: 10.1016/j.jappgeo.2014.06.009.
  • [82] Lammers M. The Finite Fractional Zak Transform. IEEE Signal Processing Letters, 2014; 21 (9): 1064-1067. doi: 10.1109/lsp.2014.2324495.
  • [83] Ran QW, et al. Vector power multiple-parameter fractional Fourier transform of image encryption algorithm. Optics and Lasers in Engineering, 2014; 62: 80-86. doi: 10.1016/j.optlaseng.2014.05.008.
  • [84]Tajahuerce E, et al. White-light optical implementation of the fractional Fourier transform with adjustable order control. Applied Optics, 2000; 39 (2): 238-245. doi: 10.1364/ao.39.000238.
  • [85] Cai LZ, and Wang YQ. Optical implementation of scale invariant fractional Fourier transform of continuously variable orders with a two-lens system. Optics and Laser Technology, 2002; 34 (3): 249-252.
  • [86] Narayanan VA, and Prabhu KMM. The fractional Fourier transform: theory, implementation and error analysis. Microprocessors and Microsystems, 2003; 27 (10): 511-521. doi: 10.1016/s0141-9331(03)00113-3.
  • [87] Cai YJ, and Wang F. Lensless optical implementation of the coincidence fractional Fourier transform. Optics Letters, 2006; 31 (15): 2278-2280. doi: 10.1364/ol.31.002278.
  • [88] Hahn J, et al. Optical implementation of iterative fractional Fourier transform algorithm. Optics Express, 2006; 14 (23): 11103-11112. doi: 10.1364/oe.14.011103.
  • [89] Sinha P, et al. Architecture of a configurable Centered Discrete Fractional Fourier Transform processor, in 50th Midwest Symposium on Circuits And Systems. 2007, Montreal, CANADA: IEEE. pp. 286-289. ISBN 978-1-4244-1175-7.
  • [90] Prasad M, et al. FPGA implementation of Discrete Fractional Fourier Transform, in International Conference on Signal Processing and Communications (SPCOM). 2010, Bangalore, INDIA: IEEE. pp. 5-14, ISBN: 978-1-4244-7137-9.
  • [91] Tao R, et al. An Efficient FPGA-based Implementation of Fractional Fourier Transform Algorithm. Journal of Signal Processing Systems for Signal Image and Video Technology, 2010; 60 (l): 47-58. doi: 10.1007/s11265-009-0401-0.
  • [92] Wang J, et al. Computation of the cascaded optical fractional Fourier transform under different variable scales. Optics Communications, 2012; 285 (6): 997-1000. doi: 10.1016/j.optcom.2011.09.070.
  • [93] Han DH, et al. The fractional Fourier transform of Airy beams using Lohmann and quadratic optical systems. Optics and Laser Technology, 2012; 44 (5): 1463-1467. doi: 10.1016/j.optlastec.2011.12.017.
  • [94] Parasa V, and Perkowski M. Quantum Pseudo-fractional Fourier Transform using Multivalued Logic, in 42nd International Symposium on Multiple-Valued Logic. 2012; Victoria, CANADA: IEEE. pp. 311-314. doi: 10.1109/ismvl.2012.69. ISBN: 978-0-7695-4673-5.
  • [95] Deng X, et al. A fast algorithm for fractional Fourier transforms. Optics Communications, 1997; 138 (46): 270-274. doi: S0030-4018(97)00057-6.
  • [96] Ran QW, et al. The discrete fractional Fourier transform and its simulation. Chinese Journal of Electronics, 2000; 9 (1): 70-75.
  • [97] Huang DF, and Chen BS. A multi-input-multi-output system approach for the computation of discrete fractional Fourier transform. Signal Processing, 2000; 80 (8): 1501-1513. doi: 10.1016/s0165-1684(00)00052-9.
  • [98] Yeh MH, and Pei SC. Method for the discrete fractional Fourier transform computation. Ieee Transactions on Signal Processing, 2003; 51 (3): 889-891. doi: 10.1109/tsp.2002.808113.
  • [99] Yang XP, et al. Improved fast fractional-Fourier-transform algorithm. Journal of the Optical Society of America a-Optics Image Science and Vision. 2004; 21 (9): 1677-1681. doi: 10.1364/josaa.21.001677.
  • [100] Zhao X, et al. Practical normalization methods in the digital computation of the fractional Fourier transform, in 7th International Conference on Signal Processing (ICSP). 2004; IEEE. pp. 105-108. doi: 10.1109/ICOSP.2004.1452592.
  • [101] Bultheel A, and Sulbaran HEM. Computation of the fractional Fourier transform. Applied And Computational Harmonic Analysis, 2004; 16 (3): 182-202. doi: 10.1016/j.acha.2004.02.001.
  • [102] Ma SW, and Liu ZJ. Discrete fractional Fourier transform algorithm via fractional domain decomposition, in First International Symposium on Test Automation & Instrumentation. 2006. Beijing, PEOPLES R CHINA: World Publishing Corporation, pp. 78-82. ISBN: 978-7-5062-8230-7.
  • [103] Zhu YQ, et al. Calculation of discrete fractional Fourier transform based on adaptive LMS algorithm, in 8th International Conference on Signal Processing. 2006. Guilin, PEOPLES R CHINA: IEEE. pp. 330-333, ISBN: 978-0-7803-9736-1.
  • [104] Zhao X, et al. Computation of Fractional Fourier Transform Using Filter Bank Approach and its Application A Fast Algorithm for Fractional Fourier Transform with Zooming-in Ability, in 4th International Conference on Wireless Communications, Networking And Mobile Computing. 2008. Dalian, China: IEEE. pp. 1934-1937, ISBN: 978-1-4244-2107-7.
  • [105] Lang J, et al. The discrete multiple-parameter fractional Fourier transform. Science China-Information Sciences, 2010; 53 (11): 2287-2299. doi: 10.1007/s11432-010-4095-5.
  • [106] Campos RG, et al. A new formulation of the fast fractional fourier transform. Siam Journal on Scientific Computing, 2012; 34 (2): A1110-A1125. doi: 10.1137/100812677.
  • [107] Vundela U, et al. Computation of Fractional Fourier Transform Using Filter Bank Approach and its Application. in International Conference on Computer Communication and Informatics. 2013; Coimbatore, INDIA: IEEE. pp. 193-201. ISBN: 978-l-4673-2907-l.
  • [108] Zhang F, et al. Discrete fractional Fourier transform computation by adaptive method. Optical Engineering, 2013; 52 (6): 11. Article ID: 068202, doi: 10.1117/1.oe.52.6.068202.
  • [109] Mei L, et al. Digital computation of the weighted-type fractional Fourier transform. Science China-Information Sciences, 2013; 56 (7). Article ID: 072306. doi: 10.1007/s11432-013-4818-5.
  • [110] Coetmellec S, et al. Characterization of diffraction patterns directly from in-line holograms with the fractional Fourier transform. Applied Optics, 2002; 41 (2): 312-319. doi: 10.1364/ao.41.000312.
  • [111] Barbu M, et al. Acoustic seabed classification using fractional fourier transform and time-frequency transform techniques, in Oceans. 2006. Boston, MA: IEEE. pp. 1197-1202, ISBN: 978-l-4244-0114-7.
  • [112] Cao M, et al. High resolution range profile imaging of high speed moving targets based on fractional fourier transform, in 5th International Symposium on Multispectral Image Processing and Pattern Recognition. 2007. Wuhan, PEOPLES R CHINA: SPIE. pp. 78654-78654, doi: 10.1117/12.750715. ISBN: 978-0-8194-6950-2.
  • [113] Yang Q, et al. MIMO-OFDM system based on fractional Fourier transform and selecting algorithm for optimal order. Science in China Series F-Information Sciences, 2008; 51 (9): 1360-1371. doi: 10.1007/s11432-008-0123-0.
  • [114] Naghsh MM, and Modarres-Hashemi M. ISAR Image Formation Based on Minimum Entropy Criterion and Fractional Fourier Transform. IEICE Transactions on Communications, 2009; (8): 2714-2722. doi: 10.1587/transcom.E92.B.2714.
  • [115] Ahmad MI, et al. Order selection in fractional Fourier transform based beamforming. Journal of Systems Engineering and Electronics, 2010; 21 (3): 361-369. doi: 10.3969/j.issn.1004-4132.2010.03.003.
  • [116] Ma DJ, et al. A novel algorithm of seeking frft order for speech processing, in International Conference on Acoustics, Speech, and Signal Processing. 2011; Prague, CZECH REPUBLIC: IEEE. pp. 3832-3835. ISBN: 978-1-4577-0539-7.
  • [117] Luo H, et al. A SVDD approach of fuzzy classification for analog circuit fault diagnosis with FWT as preprocessor. Expert Systems with Applications, 2011; 38 (8): 10554-10561. doi: 10.1016/j.eswa.2011.02.087.
  • [118] Lu YF, et al. Analysis of Fractional Fourier Transform for Ultrasonic NDE Applications, in International Ultrasonics Symposium. 2012; Orlando, FL, USA: IEEE. pp. 512-515. ISBN: 978-1-4577-1252-4.
  • [119] Jia K, et al. Recognizing Facial Expression Based on Discriminative Multi-order Two Dimensions Fractional Fourier Transform, in 5th International Congress on Image and Signal Processing. 2012; Chongqing, P R CHINA: IEEE. pp. 469-473, ISBN: 978-l-4673-0964-6.
  • [120] Harput S, et al. Extraction of Spectrally Overlapped Second Harmonic using the Fractional Fourier Transform. in International Ultrasonics Symposium (IUS). 2013; Prague, CZECH REPUBLIC: IEEE. pp. 37-40. doi: 10.1109/ultsym.2013.0010.
  • [121] Lu ZK, et al. Optimal Transform Order of Fractional Fourier Transform for Decomposition of Overlapping Ultrasonic Signals. Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2014; (l): 393-396. doi: 10.1587/transfun.E97.A.393.
  • [122] Chen EQ, and Chu CH. Single-carrier fractional Fourier domain equalization system with zero padding for fast time-varying channels. Eurasip Journal on Wireless Communications and Networking, 2014. Article ID: 74. doi: 10.1186/1687-1499-2014-74.
  • [123] Xu HP, et al. A Novel Wavenumber Domain SAR Imaging Algorithm Based on the Fractional Fourier Transform. Chinese Journal of Electronics, 2014; 23 (4): 866-870.
  • [124] Khanna R, et al. Fractional Fourier transform based beamforming for next generation wireless communication systems. Iete Technical Review, 2004: 21 (5): 357-366.
  • [125] Mei L, et al. The Approach to Carrier Scheme Convergence Based on 4-Weighted Fractional Fourier Transform. Ieee Communications Letters, 2010; 14 (6): 503-505. doi: 10.1109/lcomm.2010.06.092413.
  • [126] Lin D, et al. Fractional Fourier transform based transmitted reference scheme for UWB communications. Science China-Information Sciences, 2011; 54 (8): 1712-1722. doi: 10.1007/s11432-011-4209-8.
  • [127] White PR, and Locke J. Performance of methods based on the fractional Fourier transform for the detection of linear frequency modulated signals. IET Signal Processing, 2012; 6 (5): 478-483, doi: 10.1049/iet-spr.2011.0189.
  • [128] Qiu X, et al. Hybrid Carrier Spread Spectrum System Based on 4-Weighted Fractional Fourier Transform. China Communications, 2012; 9 (1): 13-19.
  • [129] Sha XJ, et al. Hybrid Carrier CDMA Communication System Based on Weighted-Type Fractional Fourier Transform. IEEE Communications Letters, 2012; 16 (4): 432-435. doi: 10.1109/lcomm.2012.030512.111681.
  • [130] Bai YC, et al. Performance Analysis of Lateral Velocity Estimation Based on Fractional Fourier Transform. IEICE Transactions on Communications, 2012; (6): 2174-2178. doi: 10.1587/transcom.E95.B.2174.
  • [131] Song J, et al. Iterative Interpolation for Parameter Estimation of LFM Signal Based on Fractional Fourier Transform. Circuits Systems and Signal Processing, 2013; 32 (3): 1489-1499, doi: 10.1007/s00034-012-9517-8.
  • [132] Wang H. A Novel Multiuser SISO-BOFDM Systems with Group Fractional Fourier Transforms Scheme. Wireless Personal Communications, 2013; 69 (2): 735-743. doi: 10.1007/s11277-012-0609-3.
  • [133] Yang ZY, et al. A Novel Multi-carrier Order Division Multi-access Communication System Based on TDCS with Fractional Fourier Transform Scheme. Wireless Personal Communications, 2014; 79 (2): 1301-1320. doi: 10.1007/s11277-014-1931-8.
  • [134] Deng L, et al. Secure OFDM-PON System Based on Chaos and Fractional Fourier Transform Techniques. Journal of Lightwave Technology, 2014; 32 (15): 2629-2635. doi: 10.1109/jlt.2014.2331066.
  • [135] Cui Y, and Wang JF. Wideband LFM Interference Suppression Based on Fractional Fourier Transform and Projection Techniques. Circuits Systems and Signal Processing, 2014; 33 (2): 613-627. doi: 10.1007/s00034-013-9642-z.
  • [136] Zhou NR, et al. Novel single-channel color image encryption algorithm based on chaos and fractional Fourier transform. Optics Communications, 2011; 284 (12): 2789-2796. doi: 10.1016/j.optcom.2011.02.066.
  • [137] Liu ZJ, et al. Image encryption by using local random phase encoding in fractional Fourier transform domains. Optik, 2012; 123 (5): 428-432. doi : 10.1016/j.ijleo.2011.04.022.
  • [138] Keshari S, and Modani SG. Color image encryption scheme based on 4-weighted fractional Fourier transform. Journal of Electronic Imaging, 2012; 21 (3). Article ID: 033018, doi: 10.1117/1.jei.21.3.033018.
  • [139] Wang Q. et al. Double image encryption based on phase-amplitude hybrid encoding and iterative phase encoding in fractional Fourier transform domains. Optik, 2013; 124 (22): 5496-5502, doi: 10.1016/j.ijleo.2013.03.137.
  • [140] Kong DZ, et al. Multiple-image encryption scheme based on cascaded fractional Fourier transform. Applied Optics, 2013; 52 (12): 2619-2625. doi: 10.1364/ao.52.002619.
  • [141] Wang XG,. and Zhao DM. Simultaneous nonlinear encryption of grayscale and color images based on phase-truncated fractional Fourier transform and optical superposition principle. Applied Optics, 2013; 52 (25): 6170-6178. doi: 10.1364/ao.52.006170.
  • [142] Lima JB, and Novaes LFG. Image encryption based on the fractional Fourier transform over finite fields. Signal Processing, 2014; 94: 521-530. doi: 10.1016/j.sigpro.2013.07.020.
  • [143] Lang J, and Zhang ZG. Blind digital watermarking method in the fractional Fourier transform domain. Optics and Lasers in Engineering, 2014; 53: 112-121. doi: 10.1016/j.optlaseng.2013.08.021.
  • [144] Wang Q, et al. Iterative partial phase encoding based on joint fractional Fourier transform correlator adopting phase-shifting digital holography. Optics Communications, 2014; 313: 1-8. doi: 10.1010/j.optcom.2013.09.058.
  • [145] Bhatnagar G, and Wu QMJ. Biometric Inspired Multimedia Encryption Based on Dual Parameter Fractional Fourier Transform. Ieee Transactions on Systems Man Cybernetics-Systems, 2014; 44 (9): 1234- 1247. doi: 10.1109/tsmc.2014.2303789.
  • [146] Sui LS, et al. Asymmetric multiple-image encryption based on coupled logistic maps in fractional Fourier transform domain. Optics and Lasers in Engineering, 2014; 62: 139-152. doi: 10.1016/j.optlaseng.2014.06.003.
  • [147] Zhong Z, et al. Optical movie encryption based on a discrete multiple-parameter fractional Fourier transform. Journal of Optics, 2014; 16 (11). Article ID: 125404. doi: 10.1088/2040-8978/16/12/125404.
  • [148] Vilardy JM, et al. Generalized formulation of an encryption system based on a joint transform correlator and fractional Fourier transform. Journal of Optics, 2014; 16 (11). Article ID: 125405. doi: 10.1088/2040-8978/16/12/125405.
  • [149] Li XW, and Lee IK. Modified computational integral imaging-based double image encryption using fractional Fourier transform. Optics and Lasers in Engineering, 2015; 66: 112-121. doi: 10.1016/j.optlaseng.2014.08.016.
  • [150] Elhoseny HM, et al. Chaotic encryption of images in the fractional Fourier transform domain using different modes of operation. Signal Image and Video Processing, 2015; 9 (3): 611-622, doi: 10.1007/s11760-013-0490-x.
  • [151] Lang J. Color image encryption based on color blend and chaos permutation in the reality-preserving multiple-parameter fractional Fourier transform domain. Optics Communications, 2015; 338: 181-192. doi: 10.1016/j.optcom.2014.10.049.
  • [152] Gao YQ, et al. Fractional Fourier transform of flat-topped multi-Gaussian beams. Journal of the Optical Society of America a-Optics Image Science and Vision, 2010; 27 (2): 358-365.
  • [153] Zhao CL, and Cai YJ. Propagation of a general-type beam through a truncated fractional Fourier transform optical system. Journal of the Optical Society of America a-Optics Image Science and Vision, 2010; 27 (3): 637-647.
  • [154] Moreno I, et al. Teaching stable two-mirror resonators through the fractional Fourier transform. European Journal of Physics, 2010; 31 (2): 273-284. doi: 10.1088/0143-0807/31/2/004.
  • [155] Du W, et al. Propagation of Lorentz and Lorentz-Gauss beams through an apertured fractional Fourier transform optical system. Optics and Lasers in Engineering, 2011; 49 (1): 25-31. doi: 10.1016/j.optlaseng.2010.09.004.
  • [156] Hashemi SS, et al. A study of propagation of cosh-squared-Gaussian beam through fractional Fourier transform systems. Optica Applicata, 2011; 41 (4): 897-909.
  • [157] Wang F, et al. Coincidence fractional Fourier transform with a stochastic electromagnetic Gaussian Schell-model beam. Optics Communications, 2011; 284 (22): 5275-5280. doi: 10.1016/j.optcom.2011.08.002.
  • [158] Zhang JY, et al. Propagation properties of Gaussian beams through the anamorphic fractional Fourier transform system with an eccentric circular aperture. Optik, 2011; 122 (4): 277-280. doi: 10.1016/j.ijleo.2009.11.032.
  • [159] Tang B, et al. Fractional Fourier transform for confluent hypergeometric beams. Physics Letters A. 2012; 376 (38-39): 2627-2631. doi: 10.1016/j.physleta.2012.07.017.
  • [160] Zhou GQ, et al. Fractional Fourier transform of Airy beams. Applied Physics B-Lasers and Optics. 2012; 109 (4): 549-556. doi: 10.1007/s00340-012-5117-3.
  • [161] Lu DQ, and Hu W. Two-dimensional asynchronous fractional Fourier transform and propagation properties of beams in strongly nonlocal nonlinear medium with an elliptically symmetric response. Acta Physica Sinica, 2013; 62 (8). Article ID: 084211. doi: 10.7498/aps.62.084211.
  • [162] Zhou GQ, et al. Fractional Fourier transform of Lorentz-Gauss vortex beams. Science China-Physics Mechanics & Astronomy, 2013; 56 (8): 1487-1494. doi: 10.1007/s11433-013-5153-y.
  • [163] Lu XY, et al. Experimental study of the fractional Fourier transform for a hollow Gaussian beam. Optics and Laser Technology, 2014; 56: 92-98. doi: 10.1016/j.optlastec.2013.07.023.
  • [164] Tang B, et al. Propagation properties of hollow sinh-Gaussian beams through fractional Fourier transform optical systems. Optics and Laser Technology, 2014; 59: 116-122. doi: 10.1016/j.optlastec.2013.12.016.
  • [165] Wang X, et al. Fractional Fourier transform of hollow sinh-Gaussian beams. Optical Engineering, 2014; 53 (8). Article ID: 086112. doi: 10.1117/1.oe.53.8.086112.
  • [166] Lu MF, et al. Parameter estimation of optical fringes with quadratic phase using the fractional Fourier transform. Optics and Lasers in Engineering, 2015; 74: 1-16. doi: 10.1016/j.optlaseng.2015.04.016.
  • [167] Bennett MJ, et al. The use of the fractional Fourier transform with coded excitation in ultrasound imaging. IEEE Transactions on Biomedical Engineering, 2006; 53 (4): 754-756. doi: 10.1109/tbme.2006.870211.
  • [168] Arif M, et al. Pulse compression of harmonic chirp signals using the fractional Fourier transform. Ultrasound in Medicine and Biology, 2010; 36 (6): 949-956. doi: 10.1016/j.ultrasmedbio.2010.03.018.
  • [169] Harput S, et al. Diagnostic Ultrasound Tooth Imaging Using Fractional Fourier Transform. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2011; 58 (10): 2096-2106. doi: 10.1109/tuffc.2011.2059.
  • [170] Irarrazaval, P, et al. The fractional Fourier transform and quadratic field magnetic resonance imaging. Computers & Mathematics with Applications, 2011; 62 (3): 1576-1590. doi: 10.1016/j.camwa.2011.03.027.
  • [171] Parot V, et al. Application of the fractional Fourier transform to image reconstruction in MRI. Magnetic Resonance in Medicine, 2012; 68 (1): 17-29. doi: 10.1002/mrm.23190.
  • [172] Mustafi A, and Ghorai SK. A novel blind source separation technique using fractional Fourier transform for denoising medical images. Optik, 2013; 124 (3): 265-271. doi: 10.1016/j.ijleo.2011.11.052.
  • [173] Zhang XJ, et al. Medical image registration in fractional Fourier transform domain. Optik, 2013; 124 (12): 1239-1242. doi: 10.1016/j.ijleo.2012.03.031.
  • [174] Kumari PV, and Thanushkodi K. A Secure Fast 2D-Discrete Fractional Fourier Transform Based Medical Image Compression Using Hybrid Encoding Technique, in International Conference on Current Trends in Engineering and Technology (ICCTET). 2013; Coimbatore, INDIA, pp. 1-7.
  • [175] Ji GL. BBO improves tumor detection in MRI scanning. Basic & Clinical Pharmacology & Toxicology, 2015; 117 (S3): 19-19.
  • [176] Liu G. Computer-aided diagnosis of abnormal breasts in mammogram images by weighted-type fractional Fourier transform. Advances in Mechanical Engineering, 2016; 8 (2). Article ID: 11. doi: 10.1177/1687814016634243.
  • [177] Li J. Detection of Left-Sided and Right-Sided Hearing Loss via Fractional Fourier Transform. Entropy, 2016; 18 (5). Article ID: 194. doi: 10.3390/e18050194.
  • [178] Elgamel SA, and Soraghan J. Enhanced monopulse tracking radar using optimum fractional Fourier transform. IET Radar Sonar and Navigation, 2011; 5 (1): 74-82. doi: 10.1049/iet-rsn.2010.0046.
  • [179] Wang Q. et al. SAR-Based Vibration Estimation Using the Discrete Fractional Fourier Transform. Ieee Transactions on Geoscience and Remote Sensing, 2012; 50 (10): 4145-4156. doi: 10.1109/tgrs.2012.2187665.
  • [180] Clemente C, and Soraghan JJ. Range Doppler and chirp scaling processing of synthetic aperture radar data using the fractional Fourier transform. IET Signal Processing, 2012; 6 (5): 503-510. doi: 10.1049/iet-spr.2011.0354.
  • [181] El-Mashed MG, et al. Synthetic aperture radar imaging with fractional Fourier transform and channel equalization. Digital Signal Processing, 2013; 23 (1): 151-175. doi: 10.1016/j.dsp.2012.09.001.
  • [182] Liu M, et al. Joint space-time-frequency method based on fractional Fourier transform to estimate moving target parameters for multistatic synthetic aperture radar. IET Signal Processing, 2013; 7 (l): 71-80. doi: 10.1049/iet-spr.2011.0427.
  • [183] He M, et al. Suppression of Cross-Channel Interference Based on the Fractional Fourier Transform in Polarimetric Radar. Ieee Geoscience and Remote Sensing Letters, 2013; 10 (6): 1473-1477. doi: 10.1109/lgrs.2013.2260525.
  • [184] Chen Y, et al. Imaging algorithm for missile-borne SAR using the fractional Fourier transform. Acta Physica Sinica, 2014; 63 (11): 9. Article ID: 118403. doi: 10.7498/aps.63.118403.
  • [185] Yang XJ, et al. Transport equations in fractal porous media within fractional complex transform method. Proceedings of the Romanian Academy Series a-Mathematics Physics Technical Sciences Information Science, 2013; 14 (4): 287-292.
  • [186] Kumar S, et al. Closed-Form Analytical Expression of Fractional Order Differentiation in Fractional Fourier Transform Domain. Circuits Systems and Signal Processing, 2013; 32 (4): 1875-1889. doi: 10.1007/s00034-012-9548-1.
  • [187] Yang XJ, et al. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Physics Letters A, 2013; 377 (28-30): 1696-1700. doi: 10.1016/j.physleta.2013.04.012.
  • [188] Li M, et al. Approximate Solutions for Local Fractional Linear Transport Equations Arising in Fractal Porous Media. Advances in Mathematical Physics, 2014. Article ID: 487840. doi: 10.1155/2014/487840.
  • [189] Srivastava HM, et al. Local Fractional Sumudu Transform with Application to IVPs on Cantor Sets. Abstract and Applied Analysis, 2014, Article ID: 620529. doi: 10.1155/2014/620529.
  • [190] Li YY, et al. Local Fractional Poisson and Laplace Equations with Applications to Electrostatics in Fractal Domain. Advances in Mathematical Physics, 2014, Article ID: 590574. doi: 10.1155/2014/590574.
  • [191] Yang XJ, et al. Local fractional variational iteration method for diffusion and wave equations on cantor sets. Romanian Journal of Physics, 2014; 59 (1-2): 36-48.
  • [192] Prasad A, et al. The generalized continuous wavelet transform associated with the fractional Fourier transform. Journal of Computational and Applied Mathematics, 2014; 259: 660-671. doi: 10.1016/j.cam.2013.04.016.
  • [193] Jaming P. Uniqueness results in an extension of Pauli’s phase retrieval problem. Applied and Computational Harmonic Analysis, 2014; 37 (3): 413-441. doi: 10.1016/j.acha.2014.01.003.
  • [194] Yang XJ, et al. Modelling Fractal Waves on Shallow Water Surfaces via Local Fractional Korteweg-de Vries Equation. Abstract and Applied Analysis, 2014, Article ID: 278672. doi: 10.1155/2014/278672.
  • [195] Wang XJ, et al. Local Fractional Variational Iteration Method for Inhomogeneous Helmholtz Equation within Local Fractional Derivative Operator. Mathematical Problems in Engineering, 2014, Article ID: 913202. doi: 10.1155/2014/913202.
  • [196] Yang AM, et al. Local Fractional Laplace Variational Iteration Method for Solving Linear Partial Differential Equations with Local Fractional Derivative. Discrete Dynamics in Nature and Society, 2014, Article ID: 365981. doi: 10.1155/2014/365981.
  • [197] Xu S, et al. Local Fractional Laplace Variational Iteration Method for Nonhomogeneous Heat Equations Arising in Fractal Heat Flow. Mathematical Problems in Engineering, 2014, Article ID: 914725. doi: 10.1155/2014/914725.
  • [198] Ray SS, and Sahoo S. Analytical approximate solutions of Riesz fractional diffusion equation and Riesz fractional advection-dispersion equation involving nonlocal space fractional derivatives. Mathematical Methods in the Applied Sciences, 2015; 38 (13): 2840-2849. doi: 10.1002/mma.3267.
  • [199] Dinc E, and Baleanu D. Fractional wavelet transform for the quantitative spectral resolution of the composite signals of the active compounds in a two-component mixture. Computers & Mathematics with Applications, 2010; 59 (5): 1701-1708. doi: 10.1016/j.camwa.2009.08.012.
  • [200] Kambur M, et al. Fractional Wavelet Transform for the Quantitative Spectral Resolution of the Commercial Veterinary Preparations. Revista De Chimie, 2011; 62 (6): 618-621.
  • [201] Prasad A, and Mahato A. The fractional wavelet transform on spaces of type S. Integral Transforms and Special Functions, 2012; 23 (4): 237-249. doi: 10.1080/10652469.2011.571213.
  • [202] Dinc, E. et al. Fractional Wavelet Transform-Continous Wavelet Transform for the Quantification of Melatonin and Its Photodegradation Product. Spectroscopy Letters, 2012; 45 (5): 337-343. doi: 10.1080/00387010.2012.666699.
  • [203] Shi J, et al. A novel fractional wavelet transform and its applications. Science China-Information Sciences, 2012; 55 (6): 1270-1279. doi: 10.1007/s11432-011-4320-x.
  • [204] Bhatnagar G, et al. Discrete fractional wavelet transform and its application to multiple encryption. Information Sciences, 2013; 223: 297-316. doi: 10.1016/j.ins.2012.09.053.
  • [205] Yang XJ, et al. On Local Fractional Continuous Wavelet Transform. Abstract and Applied Analysis, 2013, Article ID: 725416. doi: 10.1155/2013/725416.
  • [206] Prasad A, and Mahato A. The fractional wavelet transform on spaces of type W. Integral Transforms and Special Functions, 2013; 24 (3): 239-250. doi: 10.1080/10652469.2012.685939.
  • [207] Bhatnagar G, and Wu QMI. A new logo watermarking based on redundant fractional wavelet transform. Mathematical and Computer Modelling, 2013; 58 (l-2): 204-218. doi: 10.1016/j.mcm.2012.06.002.
  • [208] Katunin A, and Przystalka P. Damage assessment in composite plates using fractional wavelet transform of modal shapes with optimized selection of spatial wavelets. Engineering Applications of Artificial Intelligence, 2014: 30: 73-85. doi: 10.1016/j.engappai.2014.01.003.
  • [209] Katunin A. Damage assessment in composite structures using modal analysis and 2D undecimated fractional wavelet transform. Journal of Vibroengineering, 2014; 16 (8): 3939-3950.
  • [210] Shi J, et al. Multiresolution analysis and orthogonal wavelets associated with fractional wavelet transform. Signal Image and Video Processing, 2015; 9 (1): 211-220. doi: 10.1007/s11760-013-0498-2.
  • [211] Prasad A, and Kumar M. Product of two generalized pseudo-differential operators involving fractional Fourier transform. Journal of Pseudo-Differential Operators and Applications, 2011; 2 (3): 355-365. doi: 10.1007/s11868-011-0034-5.
  • [212] Pathak RS, et al. Fractional Fourier transform of tempered distributions and generalized pseudo-differential operator. Journal of Pseudo-Differential Operators and Applications, 2012; 3 (2): 239-254. doi: 10.1007/s11868-012-0047-8.
  • [213] Upadhyay SK, et al. Characterization of spaces of type W and pseudo-differential operators of infinite order involving fractional Fourier transform. Journal of Pseudo-Differential Operators and Applications, 2014; 5 (2): 215-230. doi: 10.1007/s11868-014-0092-6.
  • [214] Prasad A, and Kumar M. Boundedness of Pseudo-Differential Operator Associated with Fractional Fourier Transform. Proceedings of the National Academy of Sciences India Section a-Physical Sciences, 2014; 84 (4): 549-554. doi: 10.1007/s40010-014-0163-3.
  • [215] Bhaduri B, et al. Motion detection using extended fractional Fourier transform and digital speckle photography. Optics Express, 2010; 18 (11): 11396-11405. doi: 10.1364/oe.18.011396.
  • [216] Zhou XJ, et al. Gear Fault Signal Detection based on an Adaptive Fractional Fourier Transform Filter, in 9th International Conference on Damage Assessment of Structures (DAMAS). 2011; 0xford, ENGLAND. pp. 9-15. doi: 10.1088/1742-6596/305/1/012022, ISBN: 1742-6588.
  • [217] Guan J, et al. Adaptive fractional Fourier transform-based detection algorithm for moving target in heavy sea clutter. IET Radar Sonar and Navigation, 2012; 6 (5): 389-401. doi: 10.1049/iet-rsn.2011.0030.
  • [218] Wang, Q, et al. Nonlinear joint fractional Fourier transform correlation for target detection in hyperspectral image. Optics and Laser Technology, 2012; 44 (6): 1897-1904. doi: 10.1016/j.optlastec.2012.02.021.
  • [219] Luo JS, et al. Application of multi-scale chirplet path pursuit and fractional Fourier transform for gear fault detection in speed up and speed-down processes. Journal of Sound and Vibration. 2012; 331 (22): 4971-4986. doi: 10.1016/j,jsv.2012.06.006.
  • [220] Ajmera PK, and Holambe RS. Fractional Fourier transform based features for speaker recognition using support vector machine. Computers & Electrical Engineering, 2013; 39 (2): 550-557. doi: 10.1016/j.compeleceng.2012.05.011.
  • [221] Chen XL, et al. Detection of low observable moving target in sea clutter via fractal characteristics in fractional Fourier transform domain. Iet Radar Sonar and Navigation, 2013; 7 (6): 635-651. doi: 10.1049/iet-rsn.2012.0116.
  • [222] Singh J, and Datcu M. SAR Image Categorization With Log Cumulants of the Fractional Fourier Transform Coefficients. IEEE Transactions on Geoscience and Remote Sensing, 2013; 51 (12): 5273-5282. doi: 10.1109/tgrs.2012.2230892.
  • [223] Chen XL, et al. Detection and Extraction of Target With Micromotion in Spiky Sea Clutter via Short-Time Fractional Fourier Transform. Ieee Transactions on Geoscience and Remote Sensing, 2014; 52 (2): 1002-1018. doi: 10.1109/tgrs.2013.2246574.
  • [224] Chen XL, et al. Maneuvering Target Detection via Radon-Fractional Fourier Transform-Based Long-Time Coherent Integration. Ieee Transactions on Signal Processing, 2014; 62 (4): 939-953. doi: 10.1109/tsp.2013.2297682.
  • [225] Seok J, and Bae K. Target Classification Using Features Based on Fractional Fourier Transform. IEICE Transactions on Information and Systems, 2014; E97D (9): 2518-2521. doi: 10.1587/transinf.2014EDL8003.
  • [226] Yang X, et al. Pathological Brain Detection by a Novel Image Feature Fractional Fourier Entropy. Entropy, 2015; 17 (12): 8278-8296. doi: 10.3390/e17127877.
  • [227] Cattani C, and Rao R. Tea Category Identification Using a Novel Fractional Fourier Entropy and Jaya Algorithm. Entropy, 2016; 18 (3). Article ID: 77. doi: 10.3390/e18030077.
  • [228] Pan W, et al. An Adaptable-Multilayer Fractional Fourier Transform Approach for Image Registration. Ieee Transactions on Pattern Analysis and Machine Intelligence, 2009; 31 (3): 400-413. doi: 10.1109/tpami.2008.83.
  • [229] Guo Q, et al. Image watermarking algorithm based on fractional Fourier transform and random phase encoding. Optics Communications, 2011; 284 (16-17): 3918-3923. doi: 10.1016/j.optcom.2011.04.006.
  • [230] Li ZH, et al. Multilayer-Pseudopolar Fractional Fourier Transform Approach for Image Registration, ed. Proceedings of the 2012 Eighth International Conference on Computational Intelligence and Security, ed. 2012, New York: IEEE, pp. 323-327.
  • [231] Li ZH. et al. Estimation of Large Scalings in Images Based on Multilayer Pseudopolar Fractional Fourier Transform. Mathematical Problems in Engineering, 2013, Article ID: 179489. doi: 10.1155/2013/179489.
  • [232] Liu YJ, et al. 3D Model Retrieval ased on 3D Fractional Fourier Transform. International Arab Journal of Information Technology, 2013; 10 (5): 421-427.
  • [233] Soni A, et al. Image Steganography using Discrete Fractional Fourier Transform, in International Conference on Intelligent Systems and Signal Processing (ISSP). 2013; INDIA, IEEE. pp. 97-100, ISBN: 978-1-4799-0317-7, 978-1-4799-0316-0.
  • [234] Sang GL, et al. A Fractional Fourier Transform Based Method of Image Fusion, in 6th International Congress on Image and Signal Processing (CISP). 2013; Hangzhou, PEOPLES R CHINA: Springer, pp. 969-973, ISBN: 978-1-4799-2763-0.
  • [235] Sharma KK, and Mittal P. Investigations on use of Fractional Fourier Transform for Image Restoration in the Wiener and Geometric Mean Filters. International Conference on Communication and Electronics System Design, 2013; 8760: p. 6. doi: 10.1117/12.2012330.
  • [236] Sun Y. A Multilayer Perceptron Based Smart Pathological Brain Detection System by Fractional Fourier Entropy. Journal of Medical Systems, 2016; 40 (7), Article ID: 173. doi: 10.1007/s10916-016-0525-2.
  • [237] Ran T. et al. Research progress on discretization of fractional Fourier transform. Science in China Series F-Information Sciences, 2008; 51 (7): 859-880. doi: 10.1007/s11432-008-0069-2.
  • [238] Ran Q. et al. General multifractional Fourier transform method based on the generalized permutation matrix group. Signal Processing, IEEE Transactions on, 2005; 53 (1): 83-98. doi: 10.1109/TSP.2004.837397.
  • [239] Yu D. et al. Exponential wavelet iterative shrinkage thresholding algorithm with random shift for comprressed sensing magnetic resonance imaging. IEEJ Transactions on Electrical and Electronic Engineering, 2015; 10 (l): 116-117. doi: 10.1002/tee.22059.
  • [240] Dong Z. et al. Improving the spectral resolution and spectral fitting of 1H MRSI data from human calf muscle by the SPREAD technique. NMR in Biomedicine, 2014; 27 (11): 1325-1332. doi: 10.1002/nbm.3193.
  • [241] Goh S. et al. Mitochondrial dysfunction as a neurobiologic al subtype of autism spectrum disorder: Evidence from brain imaging. JAMA Psychiatry, 2014; 71 (6): 665-671. doi: 10.1001/jamapsychiatry.2014.179.
  • [242] Zhang Y. et al. Exponential Wavelet Iterative Shrinkage Thresholding Algorithm for compressed sensing magnetic resonance imaging. Information Sciences, 2015; 322 (0): 115-132. doi: 10.1016/j.ins.2015.06.017.
  • [243] Kanbur M. et al. Fractional Wavelet Transform for the Quantitative Spectral Analysis of Two-Component System, ed. New Trends in Nanotechnology and Fractional Calculus Applications, ed. D. Baleanu, Z. B. Guvenc, and J. A. T. Machado. 2010; 321-331.
  • [244] Celebier M, et al. Fractional Wavelet Transform and Chemometric Calibrations for the Simultaneous Determination of Amlodipine and Valsartan in Their Complex Mixture, ed. New Trends in Nanotechnology and Fractional Calculus Applications, ed. D. Baleanu, Z. B. Guvenc, and J. A. T. Machado. 2010; pp. 333-340.
  • [245] Wei L, Fruit classification by wavelet-entropy and feedforward neural network trained by fitness-scaled chaotic ABC and biogeography-based optimization. Entropy, 2015; 17 (8): 5711-5728. doi: 10.3390/e17085711.
  • [246] Baltazar A, et al. Bayesian classification of ripening stages of tomato fruit using acoustic impact and colorimeter sensor data. Computers And Electronics In Agriculture, 2008; 60 (2): 113-121. doi: 10.1016/j.compag.2007.07.005.
  • [247] Ji G. Fruit classification using computer vision and feedforward neural network. Journal of Food Engineering, 2014; 143: 167-177. doi: 10.1016/j.jfoodeng.2014.07.001.
  • [248] Mandal D. et al. Robust medical image segmentation using particle swarm optimization aided level set based global fitting energy active contour approach. Engineering Applications of Artificial Intelligence. 2014; 35: 199-214. doi: 10.1016/j.engappai.2014.07.001.
  • [249] Ayech MW, and Ziou D. Segmentation of Terahertz imaging using k-means clustering based on ranked set sampling. Expert Systems with Applications, 2015; 42 (6): 2959-2974. doi: 10.1016/j.eswa.2014.11.050.
  • [250] Pan H, et al. RGB-D image-based detection of stairs, pedestrian crosswalks and traffic signs. Journal of Visual Communication and Image Representation, 2014; 25 (2): 263-272. doi: 10.1016/j.jvcir.2013.11.005.
  • [251] Wei G. Color Image Enhancement based on HVS and PCNN. SCIENCE CHINA Information Sciences. 2010; 53 (10): 1963-1976. doi : 10.1007/s11432-010-4075-9.
  • [252] Iqbal MZ, et al. Dual-tree complex wavelet transform and SVD based medical image resolution enhancement. Signal Processing, 2014; 105: 430-437. doi: 10.1016/j.sigpro.2014.05.011.
  • [253] Bajpai M, et al. Fast multi-processor multi-GPU based algorithm of tomographic inversion for 3D image reconstruction. International Journal of High Performance Computing Applications, 2015; 29 (1): 64-72. doi: 10.1177/1094342013518444.
  • [254] Park Y, et al. Feasibility study for image reconstruction in circular digital tomosynthesis (CDTS) from limited-scan angle data based on compressed-sensing theory. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, 2015; 777: 161-166. doi: 10.1016/j.nima.2014.12.100.
  • [255] Zhang Y, et al. Energy Preserved Sampling for Compressed Sensing MRI. Computational and Mathematical Methods in Medicine, 2014; pp. 12. doi: 10.1155/2014/546814.
  • [256] Thiyagarajan A, et al. ANFIS-EM Approach for PET Brain Image Reconstruction. International Journal of Imaging Systems and Technology, 2015; 25 (1): 1-6. doi: 10.1002/ima.22114.
  • [257] Zhang Y, et al. A support-based reconstruction for SENSE MRI. Sensors, 2013; 13 (4): 4029-40. doi: 10.3390/s130404029.
  • [258] Wulker C, et al. Time-of-flight PET image reconstruction using origin ensembles. Physics in Medicine and Biology, 2015; 60 (5): 1919-1944. doi: 10.1088/0031-9155/60/5/1919.
  • [259] Peng B, et al. Image processing methods to elucidate spatial characteristics of retinal microglia after optic nerve transection. Scientific Reports, 2016; 6, Article ID: 21816. doi: 10.1038/srep21816.
  • [260] Bojanczyk M, et al. On the Borel Complexity of MSO Definable Sets of Branches. Fundamenta Informaticae, 2010; 98 (4): 337-349. doi: 10.3233/fi-2010-231.
  • [261] Arnold A, and Niwinski D. Continuous separation of game languages. Fundamenta Informaticae, 2007; 81 (1-3): 19-82.
  • [262] Carayol A, et al. Choice functions and well-orderings over the infinite binary tree. Central European Journal of Mathematics, 2010; 8 (4): 662-682. doi: 10.2478/s11533-010-0046-z.
  • [263] Scholkopf B. Artificial intelligence learning to see and act. Nature, 2015; 518 (7540): 486-487.
  • [264] You J. Artificial intelligence DARPA sets out to automate research. Science, 2015; 347 (6221): 465-465.
  • [265] Bouchaffra D, et al. Machine learning and pattern recognition models in change detection. Pattern Recognition, 2015; 48 (3): 613-615. doi: 10.1016/j.patcog.2014.10.019.
  • [266] Slapnik M, et al. Extending life cycle assessment normalization factors and use of machine learning - A Slovenian case study. Ecological Indicators, 2015, 50: 161-172. doi: 10.1016/j.ecolind.2014.10.028.
  • [267] Dong Z. Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree. Progress In Electromagnetics Research, 2014; 144: 171-184. doi: 10.2528/PIER13121310.
  • [268] Sun P. Pathological brain detection based on wavelet entropy and Hu moment invariants. Bio-Medical Materials and Engineering, 2015; 26 (s1): 1283-1290. doi: 10.2528/PIER13121310.
  • [269] Phillips P. et al. Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization. Progress In Electromagnetics Research, 2015; 152: 41-58. doi: 10.2528/PIER15040602.
  • [270] Yang J. Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM). Entropy, 2015; 17 (4): 1795-1813. doi: 10.3390/e17041795.
  • [271] Yang G. Automated classification of brain images using wavelet-energy and biogeography-based optimization. Multimedia Tools and Applications, 2016; 75 (23): 15601-15617. doi: 10.1007/s11042-015-2649-7.
  • [272] Yu D, et al. Effect of spider-web-plot in MR brain image classification. Pattern Recognition Letters, 2015; 62: 14-16. doi: 10.1016/j.patrec.2015.04.016.
  • [273] Nanthagopal AP, and Rajamony RS. Classification of benign and malignant brain tumor CT images using wavelet texture parameters and neural network classifier. Journal of Visualization, 2013; 16 (1): 19-28.
  • [274] Eskildsen SF, et al. Structural imaging biomarkers of Alzheimer’s disease: predicting disease progression. Neurobiology of Aging, 2015; 36: S23-S31. doi: 10.1016/j.neurobiolaging.2014.04.034.
  • [275] Phillips P, et al. Detection of Alzheimer’s disease and mild cognitive impairment based on structural volumetric MR images using 3D-DWT and WTA-KSVM trained by PSOTVAC. Biomedical Signal Processing and Control, 2015; 21: 58-73. doi: 10.1016/j.bspc.2015.05.014.
  • [276] Yuan TF. Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning. Frontiers in Computational Neuroscience, 2015; 9, Article ID: 66. doi: 10.3389/fncom.2015.00066.
  • [277] Zhou XX. Comparison of machine learning methods for stationary wavelet entropy-based multiple sclerosis detection: decision tree, k-nearest neighbors, and support vector machine. Simulation, 2016; 92 (9): 861-871. doi: 10.1177/0037549716666962.
  • [278] Zhan TM, and Chen Y. Multiple Sclerosis Detection Based on Biorthogonal Wavelet Transform, RBF Kernel Principal Component Analysis, and Logistic Regression. IEEE Access, 2016; 4: 7567-7576. doi: 10.1109/ACCESS.2016.2620996.
  • [279] Gorriz JM, and Ramrez J. Wavelet entropy and directed acyclic graph support vector machine for detection of patients with unilateral hearing loss in MRI scanning. Frontiers in Computational Neuroscience, 2016; 10, Article ID: 160. doi: 10.3389/fncom.2016.00106.
  • [280] Nayak DR. Detection of unilateral hearing loss by Stationary Wavelet Entropy. CNS & Neurological Disorders - Drug Targets, 2017; 16. doi: 10.2174/1871527315666161026115046 (Online).
  • [281] Wu X. Smart detection on abnormal breasts in digital mammography based on contrast-limited adaptive histogram equalization and chaotic adaptive real-coded biogeography-based optimization. SIMULATION, 2016; 92 (9): 873-885. doi: 10.1177/0037549716667834.
  • [282] Chen Y. Wavelet energy entropy and linear regression classifier for detecting abnormal breasts. Multimedia Tools and Applications, 2016. doi: 10.1007/s11042-016-4161-0 (Online).
  • [283] Sun Y, et al. Privacy-Preserving Self-Helped Medical Diagnosis Scheme Based on Secure Two-Party Computation in Wireless Sensor Networks. Computational and Mathematical Methods in Medicine. 2014, Article ID: 214841. doi: 10.1155/2014/214841.
  • [284] Sun Y, et al. Efficient Secure Multiparty Computation Protocol for Sequencing Problem over Insecure Channel. Mathematical Problems in Engineering, 2013, Article ID: 172718. doi: 10.1155/2013/172718.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3d6a57e5-ef27-4240-9809-0a16c0b71777
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.