Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 29, Iss. 4 | 474-489
Tytuł artykułu

Using neural networks to examine trending keywords in Inventory Control

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Inventory control is one of the key areas of research in logistics. Using the SCOPUS database, we have processed 9,829 articles on inventory control using triangulation of statistical methods and machine learning. We have proven the usefulness of the proposed statistical method and Graph Attention Network (GAT) architecture for determining trend-setting keywords in inventory control research. We have demonstrated the changes in the research conducted between 1950 and 2021 by presenting the evolution of keywords in articles. A novelty of our research is the applied approach to bibliometric analysis using unsupervised deep learning. It allows to identify the keywords that determined the high citation rate of the article. The theoretical framework for the intellectual structure of research proposed in the studies on inventory control is general and can be applied to any area of knowledge.
Wydawca

Rocznik
Strony
474-489
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • Jagiellonian University, Faculty of Mathematics and Computer Science, 6 prof. Stanisława Łojasiewicza, 30-348 Kraków, Poland, sadowskimichal95@gmail.com
  • Tromso UniversityTromsø School of Business and Economics, UiT The Arctic University of Norway, Narvik Campus, Lodve Langes gate 2, 8514 Narvik, Norway, per.engelseth@uit.no
  • Czestochowa University of Technology, Faculty of Management, ul. Armii Krajowej 19b 42-200 Czestochowa, Poland, b.skowron-grabowska@pcz.pl
Bibliografia
  • 1. Aas, K., Jullum, M., Løland, A., 2021. Explaining individual predictions when features are dependent: More accurate approximations to Shapley values. Artificial Intelligence, 298, 103502. DOI: 10.1016/j.artint.2021.103502
  • 2. An, S., Huang, Y., 2006. Rapid changes of soil properties following Caragana korshinski plantations in the hilly-gully Loess Plateau. Frontiers of Forestry in China, 1(4), 394–399. DOI: 10.1007/s11461-006-0043-3
  • 3. Battini, D., Persona, A., Sgarbossa, F., 2014. A sustainable EOQ model: Theoretical formulation and applications. International Journal of Production Economics, 149, 145-153. DOI: 10.1016/j.ijpe.2013.06.026
  • 4. Ben-Daya, M., Hassini, E., Bahroun, Z., 2019. Internet of things and supply chain management: a literature review. International Journal of Production Research, 57(15–16), 4719-4742. DOI: 10.1080/00207543. 2017.1402140
  • 5. Benjaafar, S., Li, Y., Daskin, M., 2013. Carbon footprint and the management of supply chains: Insights from simple models. IEEE Transactions on Automation Science and Engineering, 10(1), 99–116. DOI: 10.1109/TASE. 2012.2203304
  • 6. Botalb, A., Moinuddin, M., Al-Saggaf, U. M., Ali, S. S. A., 2018. Contrasting convolutional neural network (CNN) with multi-layer perceptron (MLP) for big data analysis., 2018 International Conference on Intelligent and Advanced System (ICIAS), 1-5. IEEE.
  • 7. Cachon, G. P., Fisher, M., 2000. Supply chain inventory management and the value of shared information. Management Science, 46(8), 1032-1048. DOI: 10.1287/mnsc.46.8.1032.12029
  • 8. Cachon, G. P., Lariviere, M. A., 2005. Supply chain coordination with revenue-sharing contracts: Strengths and limitations. Management Science, 51(1), 30-44. DOI: 10.1287/mnsc.1040.0215
  • 9. Chen, L., Zhao, X., Tang, O., Price, L., Zhang, S., Zhu, W., 2017. Supply chain collaboration for sustainability: A literature review and future research agenda. International Journal of Production Economics, 194(March), 73-87. DOI: 10.1016/j.ijpe.2017.04.005
  • 10. Coelho, L. C., Cordeau, J.-F., Laporte, G., 2014. Thirty years of inventory routing. Transportation Science, 48(1), 1-19.
  • 11. Costantino, F., Di Gravio, G., Shaban, A., Tronci, M., 2014. The impact of information sharing and inventory control coordination on supply chain performances. Computers and Industrial Engineering, 76, 292–306. DOI: 10.1016/j.cie.2014.08.006
  • 12. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., Lim, W. M., 2021. How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133(March), 285-296. DOI: 10.1016/j.jbusres.2021.04.070
  • 13. Durach, C. F., Kembro, J., Wieland, A., 2017. A New Paradigm for Systematic Literature Reviews in Supply Chain Management. Journal of Supply Chain Management, 53(4), 67–85. DOI: 10.1111/jscm.12145
  • 14. Durach, C. F., Wieland, A., Machuca, J. A. D., 2015. Antecedents and dimensions of supply chain robustness: A systematic literature review. International Journal of Physical Distribution and Logistics Management, 45, 118-137. DOI: 10.1108/IJPDLM-05-2013-0133
  • 15. Elmaghraby, W., Keskinocak, P., 2003. Dynamic pricing in the presence of inventory considerations: Research overview, current practices, and future directions. Management Science, 49(10), 1287–1309. DOI: 10.1287/mnsc.49.10.1287.17315
  • 16. Eroglu, C., Hofer, C., 2011. Lean, leaner, too lean? the inventory-performance link revisited. Journal of Operations Management, 29(4), 356-369. DOI: 10.1016/j.jom.2010.05.002
  • 17. Frohlich, M. T., Westbrook, R., 2001. Arcs of integration: An international study of supply chain strategies. Journal of Operations Management, 19(2), 185-200. DOI: 10.1016/S0272-6963(00)00055-3
  • 18. Gallego, G., Ryzin, G. Van., 2013. Optimal Dynamic Demand Pricing over of Inventories Finite Horizons with Stochastic. Management, 40(8), 999-1020.
  • 19. Gallino, S., Moreno, A., Stamatopoulos, I., 2017. Channel integration, sales dispersion, and inventory management. Management Science, 63(9), 2813-2831. DOI: 10.1287/mnsc.2016.2479
  • 20. Gardner Jr., E. S., 1985. Exponential smoothing: The state of the art. Journal of Forecasting, 4(1), 1–28. DOI: 10.1002/for.3980040103
  • 21. Gardner Jr., E. S., 2006. Exponential smoothing: The state of the art-Part II. International Journal of Forecasting, 22(4), 637-666. DOI: 10.1016/j.ijforecast.2006.03.005
  • 22. Gordon, V., Proth, J. M., Chu, C., 2002. A survey of the state-of-the-art of common due date assignment and scheduling research. European Journal of Operational Research, 139(1), 1-25. DOI: 10.1016/S0377- 2217(01)00181-3
  • 23. Grodzinski, N., Grodzinski, B., Davies, B. M., 2021. Can co-authorship networks be used to predict author research impact? A machine-learning based analysis within the field of degenerative cervical myelopathy research. Plos One, 16(9), e0256997. DOI: 10.1371/journal.pone.0
  • 24. Guide, V. D. R., Srivastava, R., 1997. Repairable inventory theory: Models and applications. European Journal of Operational Research, 102(1), 1-20. DOI:10.1016/S0377-2217(97)00155-0
  • 25. Hiassat, A., Diabat, A., Rahwan, I., 2017. A genetic algorithm approach for location-inventory-routing problem with perishable products. Journal of Manufacturing Systems, 42, 93–103. DOI: DOI: 10.1016/j.jmsy. 2016.10.004
  • 26. Hire, S., Sandbhor, S., 2020. Construction Labor Productivity Modeling and Use of Neural Networks: A Bibliometric Survey. Library Philosophy and Practice, 1-20.
  • 27. Hou, Y., Zhang, J., Cheng, J., Ma, K., Ma, R. T. B., Chen, H., Yang, M.-C., 2019. Measuring and improving the use of graph information in graph neural networks. International Conference on Learning Representations.
  • 28. Hua, G., Cheng, T. C. E., Wang, S., 2011a. Managing carbon footprints in inventory management. International Journal of Production Economics, 132(2), 178-185. DOI: 10.1016/j.ijpe.2011.03.024
  • 29. Hua, G., Cheng, T. C. E., Wang, S., 2011b. Managing carbon footprints in inventory management. International Journal of Production Economics, 132(2), 178-185.
  • 30. Kapuscinski, R., 1996. Value of Information in Capacitated Supply Chains 1 Introduction. 1-32.
  • 31. Kotsiantis, S. B., 2013. Decision trees: a recent overview. Artificial Intelligence Review, 39(4), 261-283.
  • 32. Krishna Bhargavi, Y., Murthy, Y. S. S. R., Srinivasa Rao, O., 2019. AEAO: Auto encoder with adam optimizer method for efficient document indexing of big data. International Journal of Recent Technology and Engineering, 8(3), 3933-3942. DOI: 10.35940/ijrte.C5141.098319
  • 33. Liu, L., Tsai, W. T., Bhuiyan, M. Z. A., Yang, D., 2020. Automatic blockchain whitepapers analysis via heterogeneous graph neural network. Journal of Parallel and Distributed Computing, 145, 1–12. DOI: 10.1016/j.jpdc.2020.05.014
  • 34. Lockett, A., & Wright, M., 2005. Resources, capabilities, risk capital and the creation of university spin-out companies. Research Policy, 34(7), 1043-1057
  • 35. Lu, W., Huang, S., Yang, J., Bu, Y., Cheng, Q., Huang, Y., 2021. Detecting research topic trends by author-defined keyword frequency. Information Processing and Management, 58(4). DOI: 10.1016/j.ipm.2021.102594
  • 36. Lundberg, S. M., Lee, S.-I., 2017. A unified approach to interpreting model predictions. Proceedings of the 31st International Conference on Neural Information Processing Systems, 4768–4777.
  • 37. Mazur, M., Momeni, H..2018. Lean Production issues in the organization of the company - the first stage" Production Engineering Archives, vol.21, no.21,36-39. DOI: 10.30657/pea.2018.21.08
  • 38. Mee, A., Homapour, E., Chiclana, F., Engel, O., 2021. Sentiment analysis using TF-IDF weighting of UK MPs’ tweets on Brexit [Formula presented]. Knowledge-Based Systems, 228, 107238. DOI: 10.1016/j.knosys. 2021.107238
  • 39. Metters, R., 1997. Quantifying the bullwhip effect in supply chains. Journal of Operations Management, 15(2), 89-100. DOI: 10.1016/S0272- 6963(96)00098-8
  • 40. Patil, A., 2022. Word Significance Analysis in Documents for Information Retrieval by LSA and TF-IDF using Kubeflow BT - Expert Clouds and Applications (I. Jeena Jacob, F. M. Gonzalez-Longatt, S. Kolandapalayam Shanmugam, & I. Izonin, eds.). Singapore: Springer Singapore.
  • 41. Popović, D., Vidović, M., Radivojević, G., 2012. Variable Neighborhood Search heuristic for the Inventory Routing Problem in fuel delivery. Expert Systems with Applications, 39(18), 13390-13398. DOI: 10.1016/j.eswa.2012.05.064
  • 42. Rani, R., Lobiyal, D. K., 2021. A Weighted Word Embedding based approach for Extractive Text Summarization. Expert Systems with Applications, 186(September), 115867. DOI: 10.1016/j.eswa.2021.115867
  • 43. Raviv, T., Kolka, O., 2013. Optimal inventory management of a bike-sharing station. IIE Transactions (Institute of Industrial Engineers), 45(10), 1077-1093. DOI: 10.1080/0740817X.2013.770186
  • 44. Richey, R. G., Davis-Sramek, B., 2020. Supply Chain Management and Lo gistics: An Editorial Approach for a New Era. Journal of Business Logistics, 41(2), 90–93. DOI: 10.1111/jbl.12251
  • 45. Soman, C. A., Van Donk, D. P., Gaalman, G., 2004. Combined make-to-order and make-to-stock in a food production system SOM-theme A: Primary processes within firms. Int. J. Production Economics, 90, 223-235. Retrieved from https://ac.els-cdn.com/S0925527302003766/1-s2.0- S0925527302003766-main.pdf?_tid=6feda083-4556-4d68-deb55f5900770b6&acdnat=1550064497_92e671d303d4c83d8b06938caa2a5030
  • 46. Taleizadeh, A. A., Noori-Daryan, M., Cárdenas-Barrón, L. E., 2015. Joint optimization of price, replenishment frequency, replenishment cycle and production rate in vendor managed inventory system with deteriorating items. International Journal of Production Economics, 159, 285-295. DOI: 10.1016/j.ijpe.2014.09.009
  • 47. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Polosukhin, I., 2017. Attention is all you need. Advances in Neural Information Processing Systems, 30
  • 48. Voltolini, R., Vasconcelos, K., Borsato, M., Peruzzini, M., 2018. Research and Analysis of Opportunities in Product Development Cost Estimation Through Expert Systems. Advances In Transdisciplinary Engineering, 7, 381-390.
  • 49. Woo, Y. Bin, Moon, I., Kim, B. S., 2021. Production-Inventory control model for a supply chain network with economic production rates under no shortages allowed. Computers and Industrial Engineering, 160(October 2020), 107558. DOI: 10.1016/j.cie.2021.107558
  • 50. Wu, J., Sun, J., Sun, H., Sun, G., 2021. Performance Analysis of Graph Neural Network Frameworks., 2021 IEEE International Symposium on Performance Analysis of Systems and Software, ISPASS 2021, 118-127. DOI: 10.1109/ISPASS51385.2021.00029
  • 51. Xu, X., Chen, X., Jia, F., Brown, S., Gong, Y., Xu, Y., 2018. Supply chain finance: A systematic literature review and bibliometric analysis. International Journal of Production Economics, 204(September 2016), 160-173. DOI: 10.1016/j.ijpe.2018.08.003
  • 52. Zhao, Q., Feng, X., 2022. Utilizing citation network structure to predict paper citation counts : A Deep learning approach. Journal of Informetrics, 16(1), 101235. DOI: 10.1016/j.joi.2021.101235
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3d0609c6-76fd-400c-a82a-8ebf37158868
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.