Warianty tytułu
Badanie właściwości suszenia, koloru oraz zachowania witaminy c w plastrach zielonego banana suszonych za pomocą próżniowej pompy ciepła
Języki publikacji
Abstrakty
This study aimed to evaluate the characteristics related to the removal of moisture from green banana slices and the effect of the drying conditions on color and vitamin C preservation using a drying system based upon the use of a vacuum heat pump. The green banana slices underwent drying at 40, 50, and 60°C with vacuum pressure levels of 0, 40, and 80 kPa. The average drying time decreased by 18.9% and 32.7% as the vacuum pressure and temperature increased, respectively. Six thinlayer models underwent assessment to explain the kinetic process involved in moisture removal using the vacuum heat pump set to provide differing experimental circumstances, and fitted to experimental data. Results showed that the characteristics of moisture removal from the green banana slices could most appropriately be explained by the Page model. There is in increase in effective moisture diffusivity, which ranged from 1.1658×10-10 to 1.9717×10-10 m2 ‧s-1, with increases in temperature and vacuum pressure. Energy of activation ranged from 15.99 to 19.73 kJ‧mol-1, which was explained by an exponential expression based on the Arrhenius models. The drying temperature of 50°C under a vacuum pressure of 80 kPa could preserve the vitamin C content by a maximum of 55.9%, which is the optimal drying condition for obtaining good product quality.
Niniejsze badania miało na celu ocenę właściwości usuwania wilgoci z plastrów zielonego banana oraz wpływu warunków suszenia na kolor i zachowanie witaminy C w systemie suszenia przy pomocy próżniowej pompy ciepła. Plastry zielonego banana zostały poddane suszeniu w 40, 50 i 60 °C przy poziomach podciśnienia wynoszących 0,40 i 80 kPa. Średni czas suszenia zmniejszył się o 18,9 i 32,7% gdy podciśnienie i temperatura odpowiednio wzrosły. Sześć modeli o cienkich warstwach poddano ocenie w celu wyjaśnienia procesu kinetycznego, który towarzyszy procesowi usuwania wilgoci za pomocą próżniowej pompy ciepła ustawionej tak, aby zapewnić różnorodne okoliczności doświadczenia i dopasować ją do danych eksperymentalnych. Wyniki pokazały, że właściwości usuwania wilgoci z plastrów zielonego banana mogą być najdokładniej wyjaśnione przy pomocy modelu Page’a. Wystąpił wzrost efektywnej dyfuzji wilgoci, który wahał się w zakresie 1,1658×10-10 do 1,9717×10-10 m2‧s-1, ze wzrostem temperatury i podciśnienia. Energia aktywacji wahała się w zakresie od 15,99 do 19,73 kJ‧mol-1 co zostało wyjaśnione wyrażeniem wykładniczym na podstawie Model Arrheniusa. Temperatura suszenia 50°C w podciśnieniu wynoszącym 80kPa było w stanie zachować witaminę C w 55, 9% co stanowi optymalne warunki suszenia do osiągnięcia wysokiej jakości produktu.
Czasopismo
Rocznik
Tom
Strony
167--184
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
- Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakornpathom, 73140, Thailand, narathip.suj@ku.ac.th
autor
- Energy Engineering and Electric Technology Program, Faculty of Industrial Technology, Chiang Rai Rajabhat University, Chiang Rai 57100, Thailand, thanapon.sae@crru.ac.th
autor
- Science Program, Faculty of Education, Chiang Rai Rajabhat University, Chiang Rai, 57100, Thailand, natthiya.cha@crru.ac.th
Bibliografia
- Aghbashlo, M., kianmehr, M. H. & Samimi-Akhijahani, H. (2008). Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thinlayer drying of berberis fruit (Berberidaceae). Energy Conversion and Management, 49(10), 2865-2871.
- Al-Dairi, M., Pathare, P. B., Al-Yahyai, R., Jayasuriya, H. & Al-Attabi Z. (2023). Postharvest quality, technologies, and strategies to reduce losses along the supply chain of banana: A review. Trends in Food Science & Technology, 134, 177-191.
- Artnaseaw, A., Theerakulpisut, S. & Benjapiyaporn, C. Drying characteristics of Shiitake mushroom and Jinda chili during vacuum heat pump drying. Food and Bioproducts Processing, 88(2), 105-114.
- Arévalo-Pinedo, A. & Murr, F. E. X. (2007). Influence of pre-treatments on the drying kinetics during vacuum drying of carrot and pumpkin. Journal of Food Engineering, 80(1), 152-156.
- Arumuganathan, T., Manikantan, M., Rai, R., Anandakumar, S. & Khare, V. (2009). Mathematical modelling of drying kinetics of milky mushroom in a bed dryer. International agrophysics. 23(1).
- Arslan, D., Özcan, M. M. & Mengeş, H. O. (2010). Evaluation of drying methods with respect to drying parameters, some nutritional and colour characteristics of peppermint (Mentha x piperita L.). Energy Conversion and Management, 51(12), 2769-2775.
- Beigi, M. (2016). Hot air drying of apple slices: dehydration characteristics and quality assessment. Heat and Mass Transfer, 52(8), 1435-1442.
- Colak, N. & Hepbasli, A. (2009). A review of heat pump drying: Part 1 - Systems, models and studies. Energy Conversion and Management, 50(9), 2180-2186.
- Crank, J. (1979). The mathematics of diffusion. Oxford: Oxford university press.
- Datta, A. K. & Anantheswaran, R. C. (2001). Handbook of microwave technology for food application. Florida: CRC Press.
- Demir, V., Gunhan, T., Yagcioglu, A. & Degirmencioglu, A. (2004). Mathematical modelling and the determination of some quality parameters of air-dried bay leaves. Biosystems engineering, 88(3), 325-335.
- Falcomer, A. L., Riquette, R. F. R., de Lima, B. R., Ginani, V. C. & Zandonadi, R. P. (2019). Health benefits of green banana consumption: A systematic review. Nutrients, 11(6), 1222.
- Fan, H., Shao, S. & Tian, C. (2004). Performance investigation on a multi-unit heat pump for simultaneous temperature and humidity control. Applied Energy, 113, 883-890.
- Gadhave, R. K., Kaur, R., Das, R., Prasad, K. (2023). Dehydration kinetics of green banana slices, characterization of optimized product based on physicochemical, nutritional, optical, and sensory attributes. Journal of Applied Biology & Biotechnology, 11(6), 82-93.
- Hii, C. L., Law, C. L. & Suzannah, S. (2012). Drying kinetics of the individual layer of cocoa beans during heat pump drying. Journal of Food Engineering, 108(2), 276-282.
- Jayatunga, G. K. & Amarasinghe, B. M. W. P. K. (2019). Drying kinetics, quality and moisture diffusivity of spouted bed dried Sri Lankan black pepper. Journal of Food Engineering, 263, 38-45.
- Jena, S. & Das, H. (2007). Modelling for vacuum drying characteristics of coconut presscake. Journal of Food Engineering, 79(1), 92-99.
- Kaleemullah, S. & Kailappan, R. (2006). Modelling of thin-layer drying kinetics of red chillies. Journal of Food Engineering, 76(4), 531-537.
- Kaleta, A. & Górnicki, K. (2010). Some remarks on evaluation of drying models of red beet particles. Energy Conversion and Management, 51(12), 2967-2978.
- Lee, S. K. & Kader, A. A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology, 20(3), 207-220.
- Li, Z. (2023). Modeling banana uptake of pesticides by incorporating a peel-pulp interaction system into a multicompartment fruit tree model. Journal of Hazardous Materials, 444, 130411.
- Macedo, L. L., Vimercati, W. C., Araújo, C. S., Saraiva, S. H., & Teixeira, L. J. Q. (2020). Effect of drying air temperature on drying kinetics and physicochemical characteristics of dried banana. Journal of Food Process Engineering, 43(9), e13451.
- Madamba, P. S., Driscoll, R. H. & Buckle, K. A. (1996). The thin-layer drying characteristics of garlic slices. Journal of Food Engineering, 29(1), 75-97.
- Meng, Z., Cui, X., Liu, Y., Hu, R., Du, C., Wang, S. & Zhang, F. (2022). Drying characteristics of banana slices under heat pump-electrohydrodynamic (EHD) combined drying. Sustainable Energy Technologies and Assessments, 54, 102907.
- Meziane, S. (2011). Drying kinetics of olive pomace in a fluidized bed dryer. Energy Conversion and Management, 52(3), 1644-1649.
- Midilli, A., Kucuk, H. & Yapar, Z. (2002). A new model for single-layer drying. Drying Technology, 20(7), 1503-1513.
- Minea, V. (2013). Drying heat pumps - Part II: Agro-food, biological and wood products. International Journal of Refrigeration, 36(3), 659-673.
- Mohapatra, D., Mishra, S. & Sutar, N. (2010). Banana and its by-product utilisation: An overview. Journal of Scientific and Industrial Research, 69(5), 323-329.
- Onwude, D. I., Hashim, N., Janius, R. B., Nawi, N. M. & Abdan, K. (2016). Modeling the Thin-Layer Drying of Fruits and Vegetables: A Review. Comprehensive Reviews in Food Science and Food Safety, 15(3), 599-618.
- Prasertsan, S. & Saen-saby, P. (1998). Heat pump drying of agricultural materials. Drying Technology, 16(1-2), 235-250.
- Rahim, M. S. A. A., Salihon, J., Yusoff, M. M., Bakar, I. A. & Damanik, M. R. M. (2010). Effect of Temperature and Time to the Antioxidant Activity in Plecranthus amboinicus Lour. American Journal of Applied Sciences, 7(9).
- Ratti, C. (2008). Advances in Food Dehydration. Florida: CRC Press.
- Riquette, R. F. R., Ginani, V. C., Leandro, E. D. S., de Alencar, E. R., Maldonade, I. R., de Aguiar, L. A., de Souza Acácio, G. M., Mariano, D. R. H. & Zandonadi, R. P. (2019). Do production and storage affect the quality of green banana biomass?. LWT, 111, 190-203.
- Seyedabadi, E., Khojastehpour, M. & Abbaspour-Fard, M. H. (2017). Convective drying simulation of banana slabs considering non-isotropic shrinkage using FEM with the Arbitrary Lagrangian - Eulerian method. International Journal of Food Properties, 20(sup1), S36-S49.
- Singh, A., Sarkar, J. & Sahoo, R. R. (2020). Experimental performance analysis of novel indirectexpansion solar-infrared assisted heat pump dryer for agricultural products. Solar Energy, 206, 907-917.
- Soponronnarit, S., Nathakaranakule, A., Wetchacama, S., Swasdisevi, T. & Rukprang, P. (2007). Fruit drying using heat pump. International Energy Journal, 20(1), 39-53.
- Stawreberg, L. & Nilsson, L. (2010). Modelling of specific moisture extraction rate and leakage ratio in a condensing tumble dryer. Applied thermal engineering, 30(14-15), 2173-2179.
- Sujinda, N., Varith, J., Shamsudin, R., Jaturonglumlert, S. & Chamnan S. Development of a closedloop control system for microwave freeze-drying of carrot slices using a dynamic microwave logic control. Journal of Food Engineering, 302, 110559.
- Sawasdisevi, T., Devahastin, S., Ngamchum, R., & Soponronnarit, S. (2007). Optimization of a drying process using infrared-vacuum drying of Cavendish banana slices. Songklanakarin Journal of Science and Technology, 29(3), 809-816.
- Tchuenchieu, A., Essia Ngang, J. J., Servais, M., Dermience, M., Sado Kamdem, S., Etoa, F. X. & Sindic, M. (2018). Effect of low thermal pasteurization in combination with carvacrol on color, antioxidant capacity, phenolic and vitamin C contents of fruit juices. Food Science & Nutrition, 6(4), 736-746.
- Teeboonma, U., Tiansuwan, J. & Soponronnarit, S. (2003). Optimization of heat pump fruit dryers. Journal of Food Engineering, 59(4), 369-377.
- Tincheva, P. A. (2019). The effect of heating on the vitamin C content of selected vegetables. World Journal of Advanced Research and Reviews, 3(3), 27-32.
- Torki-Harchegani, M., Ghanbarian, D., Ghasemi Pirbalouti, A. & Sadeghi, M. (2016). Dehydration behaviour, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments. Renewable and Sustainable Energy Reviews, 58, 407-418.
- Tunckal, C. & Doymaz, İ. (2020). Performance analysis and mathematical modelling of banana slices in a heat pump drying system. Renewable Energy, 150, 918-923.
- Xanthopoulos, G., Oikonomou, N. & Lambrinos, G. (2007). Applicability of a single-layer drying model to predict the drying rate of whole figs. Journal of Food Engineering, 81(3), 553-559.
- Yang, Z., Zhu, E., Zhu, Z., Wang, J. & Li S. (2013). A comparative study on intermittent heat pump drying process of Chinese cabbage (Brassica campestris L.ssp) seeds. Food and Bioproducts Processing. 91(4), 381-388.
- Zielinska, M., Zapotoczny, P., Alves-Filho, O., Eikevik, T. M. & Blaszczak, W. (2013). A multi-stage combined heat pump and microwave vacuum drying of green peas. Journal of Food Engineering, 115(3), 347-356.
- Zogzas, N. P., Maroulis, Z. B. & Marinos-Kouris, D. (1996). Moisture Diffusivity Data Compilation in Foodstuffs. Drying Technology, 14(10), 2225-2253.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3ce6e9c7-742d-422f-82fc-8b11f68f1841