Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The photopupillary reflex regulates the pupil reaction to changing light conditions. Being controlled by the autonomic nervous system, it is a proxy for brain trauma and for the conditions of patients in critical care. A prompt evaluation of brain traumas can save lives. With a simple penlight, skilled clinicians can do that, whereas less specialized ones have to resort to a digital pupilometer. However, many low-income countries lack both specialized clinicians and digital pupilometers. This paper presents the early results of our study aiming at designing, prototyping and validating an app for testing the photopupillary reflex via Android, following the European Medical Device Regulation and relevant standards. After a manual validation, the prototype underwent a technical validation against a commercial Infrared pupilometer. As a result, the proposed app performed as well as the manual measurements and better than the commercial solution, with lower errors, higher and significant correlations, and significantly better Bland-Altman plots for all the pupillometry-related measures. The design of this medical device was performed based on our expertise in low-resource settings. This kind of environments imposes more stringent design criteria due to contextual challenges, including the lack of specialized clinicians, funds, spare parts and consumables, poor maintenance, and harsh environmental conditions, which may hinder the safe operationalization of medical devices. This paper provides an overview of how these unique contextual characteristics are cascaded into the design of an app in order to contribute to the Sustainable Development Goal 3 of the World Health Organization: Good health and well-being.
Wydawca

Rocznik
Strony
891--902
Opis fizyczny
Bibliogr. 61 poz., rys., tab., wykr.
Twórcy
  • Applied Biomedical Signal Processing Intelligent eHealth Lab, School of Engineering, University of Warwick, Coventry CV47AL, United Kingdom, d.piaggio@warwick.ac.uk
autor
  • Applied Biomedical Signal Processing Intelligent eHealth Lab, School of Engineering, University of Warwick, Coventry, United Kingdom
  • Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania ‘Luigi Vanvitelli’, Naples, Italy
  • Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania ‘Luigi Vanvitelli’, Naples, Italy
  • Department of Information Engineering, University of Florence, Florence, Italy
  • Applied Biomedical Signal Processing Intelligent eHealth Lab, School of Engineering, University of Warwick, Coventry, United Kingdom
Bibliografia
  • [1] Hall JE. Guyton and Hall textbook of medical physiology eBook. Elsevier Health Sciences; 2015.
  • [2] Adoni A, McNett M. The pupillary response in traumatic brain injury: a guide for trauma nurses. J Trauma Nursing 2007;14:191–6.
  • [3] Chen JW, Gombart ZJ, Rogers S, Gardiner SK, Cecil S, Bullock RM. Pupillary reactivity as an early indicator of increased intracranial pressure: The introduction of the Neurological Pupil index. Surg Neurol Int. 2011;2.
  • [4] Wildemeersch D, Peeters N, Saldien V, Vercauteren M, Hans G. Pain assessment by pupil dilation reflex in response to noxious stimulation in anaesthetized adults. Acta Anaesthesiol Scand 2018;62:1050–6.
  • [5] Wildemeersch D, Baeten M, Peeters N, Saldien V, Vercauteren M, Hans G. Pupillary dilation reflex and pupillary pain index evaluation during general anaesthesia: a pilot study. Romanian J Anaesthesia Intensive Care 2018;25:19–23.
  • [6] Bryant CD. Handbook of death and dying. Sage; 2003.
  • [7] Hall CA, Chilcott RP. Eyeing up the future of the pupillary light reflex in neurodiagnostics. Diagnostics 2018;8:19.
  • [8] Sharpe LG, Pickworth WB, Martin WR. Actions of amphetamine and antagonists on pupil diameter in the chronic sympathectomized dog. Psychopharmacology 1977;53:115–20.
  • [9] Rollins MD, Feiner JR, Lee JM, Shah S, Larson M. Pupillary effects of high-dose opioid quantified with infrared pupillometry. Anesthesiology 2014;121:1037–44.
  • [10] Park JC, Chen Y-F, Blair NP, Chau FY, Lim JI, Leiderman YI, et al. Pupillary responses in non-proliferative diabetic retinopathy. Sci Rep 2017;7:44987.
  • [11] Liew B, Zainab K, Cecilia A, Zarina Y, Clement T. Early management of head injury in adults in primary care. Malaysian Family Physician 2017;12:22.
  • [12] Moppett IK. Traumatic brain injury: assessment, resuscitation and early management. Br J Anaesth 2007;99:18–31.
  • [13] Health NIf, Excellence C. Head injury: assessment and early management. London: NICE Guideline (CG176). 2014.
  • [14] Melillo P, de Benedictis A, Villani E, Ferraro MC, Iadanza E, Gherardelli M, et al. Toward a novel medical device based on chromatic pupillometry for screening and monitoring of inherited ocular disease: A pilot study. World Congress on Medical Physics and Biomedical Engineering 2018: Springer; 2019. p. 387-90.
  • [15] Iadanza E, Fabbri R, Luschi A, Gavazzi F, Melillo P, Simonelli F, et al. ORA´ O: RESTful cloud-based ophthalmologic medical record for chromatic pupillometry. In: International Conference on Medical and Biological Engineering. Springer; 2019. p. 713–20.
  • [16] Iadanza E, Fabbri R, Luschi A, Melillo P, Simonelli F. A collaborative RESTful cloud-based tool for management of chromatic pupillometry in a clinical trial. Health Technol 2020;10:25–38.
  • [17] Iadanza E, Goretti F, Sorelli M, Melillo P, Pecchia L, Simonelli F, et al. Automatic detection of genetic diseases in pediatric age using pupillometry. IEEE Access 2020;8:34949–61.
  • [18] Kim T-H, Youn J-IJJotOSoK. Development of a Smartphonebased Pupillometer. 2013;17:249-54.
  • [19] Mariakakis A, Baudin J, Whitmire E, Mehta V, Banks MA, Law A, et al. Pupilscreen: Using smartphones to assess traumatic brain injury. 2017;1:81.
  • [20] McAnany JJ, Smith BM, Garland A, Kagen SLJO, Science V. iPhone-based pupillometry: a novel approach for assessing the pupillary light reflex. 2018;95:953.
  • [21] Vigário R, Santos M, Vences R, Quintão C. Towards a mobile phone pupillometer. In: International Conference on Applied Human Factors and Ergonomics. Springer; 2019. p. 194–206.
  • [22] Sluss K, Rao R, Schuler J. Evaluation of Reflex and its Applications in Medicine.
  • [23] Melillo P, Pecchia L, Testa F, Rossi S, Bennett J, Simonelli F. Pupillometric analysis for assessment of gene therapy in Leber Congenital Amaurosis patients. Biomed Eng Online 2012;11:40.
  • [24] Li D, Winfield D, Parkhurst DJ. Starburst: A hybrid algorithm for video-based eye tracking combining feature-based and model-based approaches. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)-Workshops: IEEE; 2005. p. 79-.
  • [25] Barragan D. Tracking pupil using image processing. Available at: https://it.mathworks.com/matlabcentral/fileexchange/ 49599-tracking-pupil-using-image-processing Last access: 22/02/2021.
  • [26] Ferone A, Frucci M, Petrosino A, di Baja GS. Iris detection through watershed segmentation. In: International Workshop on Biometric Authentication. Springer; 2014. p. 57–65.
  • [27] Jarjes AA, Wang K, Mohamme GJ. GVF snake-based method for accurate pupil contour detection. Inf Technol J 2010;9:1653–8.
  • [28] Minaee S, Abdolrashidi A. Deepiris: Iris recognition using a deep learning approach. arXiv preprint arXiv:190709380. 2019.
  • [29] Saidi H, Mutiso BK, Ogengo JJJotm, outcomes. Mortality after road traffic crashes in a system with limited trauma data capability. 2014;8:4.
  • [30] WHO. The top 20 causes of death. Available at: https://www. who.int/news-room/fact-sheets/detail/the-top-10-causes-ofdeath Last access: 22/02/2021.
  • [31] UN. Transforming our world: the 2030 Agenda for Sustainable Development. Available at: https://sustainabledevelopment. un.org/post2015/transformingourworld Last access: 22/02/ 2021.
  • [32] Couret D, Boumaza D, Grisotto C, Triglia T, Pellegrini L, Ocquidant P, et al. Reliability of standard pupillometry practice in neurocritical care: an observational, doubleblinded study. Crit Care 2016;20. https://doi.org/10.1186/ s13054-016-1239-z.
  • [33] Shah MT, Joshipura M, Singleton J, LaBarre P, Desai H, Sharma E, et al. Assessment of the availability of technology for trauma care in India. World J Surg 2015;39:363–72.
  • [34] Fetterman DM. Ethnography (Vol. 17). Thousand Oaks, Ca. 1998.
  • [35] Jaffray DA. World congress on medical physics and biomedical engineering, june 7-12, 2015, Toronto, Canada. IFMBE Proc2015. p. 994-7.
  • [36] Pecchia L. Assessment of Medical Devices in low income settings. Third WHO Global Forum on Medical Devices. Geneva, 2017.
  • [37] Eskola H, Väisänen O, Viik J, Hyttinen J. EMBEC & NBC 2017: Joint Conference of the European Medical and Biological Engineering Conference (EMBEC) and the Nordic-Baltic Conference on Biomedical Engineering and Medical Physics (NBC), Tampere, Finland, June 2017: Springer; 2017.
  • [38] Lhotska L, Sukupova L, Lacković I, Ibbott GS. World Congress on Medical Physics and Biomedical Engineering 2018: June 3-8, 2018, Prague, Czech Republic: Springer; 2018.
  • [39] WHO. Fourth WHO Global Forum on Medical Devices. Geneva2019.
  • [40] Pecchia L, Pallikarakis N, Magjarevic R, Iadanza E. Health Technology Assessment and Biomedical Engineering: Global trends, gaps and opportunities. Med Eng Phys 2019;72:19–26.
  • [41] Piaggio D, Medenou D, Houessouvo RC, Pecchia L. Donation of medical devices in low-income countries: preliminary results from field studies. In: International Conference on Medical and Biological Engineering. Springer; 2019. p. 423–7.
  • [42] Piaggio D, Namm G, Pecchia L. Vol. 2 (2019): Special Issue 2: 3rd ICEHTMC Proceedings: Global Clinical Engineering Journal. ICEHTMC. Rome: GlobalCE; 2019.
  • [43] Di Pietro L, Piaggio D, Oronti I, Maccaro A, Houessouvo RC, Medenou D, et al. A framework for assessing healthcare facilities in low-resource settings: field studies in Benin and Uganda. J Med Biol Eng 2020;40:526–34.
  • [44] Ciuffreda KJ, Joshi NR, Truong JQ. Understanding the effects of mild traumatic brain injury on the pupillary light reflex. Concussion 2017;2:CNC36. https://doi.org/10.2217/cnc-2016-0029.
  • [45] Calandra DM, Di Martino S, Riccio D, Visconti A. Smartphone based pupillometry: an empirical evaluation of accuracy and safety. In: International Conference on Image Analysis and Processing. Springer; 2017. p. 433–43.
  • [46] Shin YD, Bae JH, Kwon EJ, Kim HT, Lee TS, Choi YJ. Assessment of pupillary light reflex using a smartphone application. Exp Ther Med 2016;12:720–4.
  • [47] Voudoukis N, Oikonomidis S. Inverse square law for light and radiation: a unifying educational approach. Eur J Eng Technol Res 2017;2:23. https://doi.org/10.24018/ejers.2017.2.11.517.
  • [48] Knapen T, de Gee JW, Brascamp J, Nuiten S, Hoppenbrouwers S, Theeuwes JJPO. Cognitive and ocular factors jointly determine pupil responses under equiluminance. 2016;11: e0155574.
  • [49] Statcounter. Mobile & Tablet Android Version Market Share Worldwide. Available at: https://gs.statcounter.com/androidversion-market-share/mobile-tablet/worldwide Last access: 22/02/2021.
  • [50] Shapiro SS, Wilk MBJB. An analysis of variance test for normality (complete samples). 1965;52:591-611.
  • [51] ISO. International standard ISO 15004-2, Ophthalmic instruments - Fundamental requirements and test methods, Part 2, Light hazard protection. 2007.
  • [52] De Maria C, Di Pietro L, Ravizza A, Lantada AD, Ahluwalia AD. Open-source medical devices: healthcare solutions for low-, middle-, and high-resource settings. In: Clinical Engineering Handbook. Elsevier; 2020. p. 7–14.
  • [53] Statista. Market share of mobile operating systems in Africa from January 2018 to July 2020. Available at: https://www. statista.com/statistics/1045247/share-of-mobile-operatingsystems-in-africa-by-month/ Last access: 22/02/2021.
  • [54] Statista. Size of the medical device market in Africa in 2017 and a forecast for 2023. Available at: https://www. statista.com/statistics/890876/medical-device-market-sizeafrica/ Last access: 22/02/2021.
  • [55] Borsci S, Kuljis J, Barnett J, Pecchia L. Beyond the user preferences: Aligning the prototype design to the users’ expectations. Hum Factors Ergon Manuf Serv Ind 2016;26:16–39.
  • [56] Firsing S. How severe is Africa’s brain drain? Africa at LSE. 2016.
  • [57] Bland JM, Altman DJTl. Statistical methods for assessing agreement between two methods of clinical measurement. 1986;327:307-10.
  • [58] Giavarina DJBmBm. Understanding bland altman analysis. 2015;25:141-51.
  • [59] USEPA. Monitoring Guidance for Determining the Effectiveness of Nonpoint Source Controls. 1997.
  • [60] McKay RE, Kohn MA, Schwartz ES, Larson MD. Evaluation of two portable pupillometers to assess clinical utility. Concussion 2020;5:CNC82.
  • [61] Neice AE, Fowler C, Jaffe RA, Brock-Utne JG. Feasibility study of a smartphone pupillometer and evaluation of its accuracy. J Clin Monit Comput 2020;1–9.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3cca3f59-53ca-44d6-90f1-bc46f2f93695
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.