Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | nr 5-6 | 20--26
Tytuł artykułu

Rozwój metodyk oznaczania leków stosowanych w medycynie w stałych próbkach środowiskowych

Autorzy
Warianty tytułu
EN
Development of analytical methods for determining human pharmaceuticals in the environmental solid samples
Języki publikacji
PL
Abstrakty
PL
Problem wszechobecności leków stosowanych w medycynie w środowisku naturalnym jest powszechnie znany i szeroko dyskutowany w literaturze naukowej. Skutkuje on stale rozszerzającym się zjawiskiem lekooporności i spadkiem skuteczności leczenia ludzi, a także potwierdzonym, negatywnym wpływem na środowisko. Aktualnie badania dotyczące oceny stopnia zanieczyszczenia pozostałościami leków środowiska wodnego są realizowane w wielu krajach na świecie. Znacznie mniej danych odnosi się do stałych próbek środowiskowych. Wynika to z trudności analitycznych i braku odpowiednich metodyk oznaczania niskich stężeń leków (rzędu ng/g) w tak złożonych matrycach. Celem niniejszego artykułu jest omówienie zagadnień związanych z rozwojem metodyk oznaczania leków w stałych próbkach środowiskowych.
EN
The problem of the ubiquity of human pharmaceuticals in the environment is well known and widely discussed in the scientific literature. It results in a constantly expanding phenomenon of drug resistance and in decreasing of the effectiveness of treatment of people, as well as in a confirmed, negative impact on the environment. Currently, in many countries around the world many investigations are being performed in terms of the determination of  the contamination of aquatic ecosystems by human pharmaceuticals. Much less information is available for environmental solid samples. This is connected with the analytical difficulties and poor availability of proper analytical methods for determining such low drug concentrations (in the range of ng/g) in such complex matrices. The main aim of the article is to discuss the development of methods for determining human pharmaceuticals in the environmental solid samples.
Wydawca

Rocznik
Tom
Strony
20--26
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
autor
  • Katedra Analizy Środowiska, Wydział Chemii, Uniwersytet Gdański
Bibliografia
  • 1. Bogdan W. i wsp.: Raport: Polska 2025. Nowy motor wzrostu w Europie. McKinsey & Company, Warszawa [doi: http://mckinsey.pl/wp-content/uploads/2015/10/Polska-2025_ca%C5%82y-raport.pdf ].
  • 2. Aitken M.: Global Medicines Use in 2020. IMS Institute for Healthcare Informatics, Parsippany, USA, 2015.
  • 3. Guideline on the environmental risk assessment of medicinal products for human use. European Medicines Agency, London, 2006.
  • 4. Aga D.S. (ed): Fate of Pharmaceuticals in the Environment and on Water Treatment Systems. London, CRC Press Taylor & Francis Group, Boca Raton, New York 2008.
  • 5. Carlsson C. i wsp.: Are pharmaceuticals potent environmental pollutants? Part I: Environmental risk assessments of selected active pharmaceutical ingredients. „Sci. Total Environ.”, 2006, 364, 67-87.
  • 6. Kümmerer K.: The presence of pharmaceuticals in the environment due to human use – present knowledge and future challenges. „J. Environ. Management”, 2009, 90, 2354-2366.
  • 7. Li W.C.: Occurrence, sources and fate of pharmaceuticals in aquatic environment and soil. „Environ. Pollut.”, 2014, 187, 193-201.
  • 8. Kostowski W., Herman Z.S.: Farmakologia: podstawy farmakoterapii. Podręcznik dla studentów medycyny i lekarzy. PZWL, Warszawa, 2005.
  • 9. Combalbert S., Hernandez-Raquet G.: Occurrence, fate and biodegradation of estrogens in sewage and manure. „Appl. Microbiol. Biotech.”, 2010, 86, 1671-1692.
  • 10. Gabet V. i wsp.: Analysis of estrogens in environmental matrices. „Trend Anal. Chem.”, 2007, 26, 1113-1131.
  • 11. Petrović M., Barceló D. [red.]: Analysis, fate and removal of pharmaceutical in the water cycle. „Comprehensive Analytical Chemistry”, Elsevier, Amsterdam 2007.
  • 12. Reemtsma T., Jekel M. (ed.): Organic Pollutions in the Water Cycle Properties, Occurrence, Analysis and Environmental Relevance of Polar Compounds. WILEY-VCH Vergal GmbH&Co. KGaA, Weinheim 2006.
  • 13. Krümmerer K. (red.): Pharmaceuticals in the environment: Sources, fate, effects, and risks. 2nd ed. Springer, Berlin 2004.
  • 14. Disposal and Recycling Routes for Sewage Sludge. European Commission, DG Environment – B2, 2002.
  • 15. A Guide to Understanding Biosolids Issues. Water Environment Federation and NACWA, 2013.
  • 16. Dodgen L.K. i wsp.: Transformation and removal pathways of four common PPCP/EDCs in soil. „Environ. Pollut.”, 2014, 193, 29-36.
  • 17. Roccaro P., Vagliasindi F.: Risk assessment of the use of biosolids containing emerging organic contaminants in agriculture. „Chemical Engineering Transactions”, 2014, 37 817-822.
  • 18. Working document on sludge. Third draft, Brussels, 27 April 2000 ENV. E. 3/LM.
  • 19. Santos L.H.M.L.M. i wsp.: Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. „J. Hazard. Mater.”, 2010, 175 45-95.
  • 20. Daughton C.G.: Pharmaceuticals and the Environment (PiE): Evolution and impact of the published literature revealed by bibliometric analysis. „Sci. Total Environ.”, 2016, 562, 391-426.
  • 21. Der Beek T.A. i wsp.: Pharmaceuticals in the environment – global occurrences and perspectives. „Environ. Toxicol. Chem.”, 2016, 35, 823-835.
  • 22. Białk-Bielińska A. i wsp.: Selected analytical challenges in the determination of pharmaceuticals in drinking/marine waters and soil/sediment samples. „J. Phar. Biomed. Anal.”, 2016, 121, 271-298.
  • 23. Goeppert N. i wsp.: Detection, fate and transport of estrogen family hormones in soil. „Chemosphere”, 2014, 95, 336-345.
  • 24. Langdon K.A. i wsp.: Persistence of estrogenic activity in soils following land application of biosolids. „Environ. Toxicol. Chem.”, 2014, 33, 26-28.
  • 25. Tanoue R. i wsp.: Plant Uptake of Pharmaceutical Chemicals Detected in Recycled Organic Manure and Reclaimed Wastewater. „J. Agri. Food Chem.”, 2012, 60, 10203-10211.
  • 26. Winker M. i wsp.: Ryegrass uptake of carbamazepine and ibuprofen applied by urine fertilization. „Sci.Total Environ.”, 2010, 408, 1902-1908.
  • 27. Wu C.X. i wsp.: Uptake of Pharmaceutical and Personal Care Products by Soybean Plants from Soils Applied with Biosolids and Irrigated with Contaminated Water. „Environ. Sci, Technol.”, 2010, 44, 6157-6161.
  • 28. Pavloviċ D.M. i wsp.: Sample preparation in analysis of pharmaceuticals. „Trends Anal. Chem.”, 2007, 26, 1062-1075.
  • 29. Wilga J. i wsp.: Studies of Human and Veterinary Drugs’ Fate in Environmental Solid Samples – Analytical Problems. „J. Chromatogr. Sci.”, 2008, 46, 601-608.
  • 30. Kemper N.: Veterinary antibiotics in the aquatic and terrestrial environment. „Ecol. Ind.”, 2008, 8, 1-13.
  • 31. Buchberger W.W.: Current approaches to trace analysis of pharmaceuticals and personal care products in the environment. „J. Chromatogr. A.”, 2011, 1218, 603-618.
  • 32. Tadeo J.L. i wsp.: Analysis of emerging organic contaminants in environmental solid samples. „Cent. Eur. J. Chem.”, 2012, 10 (3), 480-520.
  • 33. Babić S., Mutavdžić Pavlović D.: Analysis of PhACs in solid environmental samples (soil, sediment, and sludge). „Comprehensive Anal. Chem.”, 2013, 62, 129-167.
  • 34. Snow D.D. i wsp.: Detection, Occurrence, and Fate of Emerging Contaminants in Agricultural Environments. „Water Environ. Res.”, 2009, 81, 764-785.
  • 35. Snow D.D. i wsp.: Detection. Occurrence and Fate of Emerging Contaminants in Agricultural Environments. „Water Environ. Res.”, 2014, 86, 865-881.
  • 36. Havens S.M. i wsp.: Comparison of accelerated solvent extraction, soxhlet and sonication techniques for the extraction of estrogens, androgens and progestogens from soils. „J. Agric. Chem. Environ.”, 2014, 3, 103-120.
  • 37. Albero B. i wsp.: Ultrasound-assisted extraction of emerging contaminants from environmental samples. „Trends Anal. Chem.”, 2015, 71, 110-118.
  • 38. Beck J. i wsp.: A rapid and efficient determination of natural estrogens in soils by pressurised liquid extraction and gas chromatography–mass spectrometry. „Chemosphere”, 2008, 71, 954-960.
  • 39. Streck G.: Chemical and biological analysis of estrogenic, progestagenic and androgenic steroids in the environment. „Trends Anal. Chem.”, 2009, 28, 635-652.
  • 40. Zhang, Z. i wsp.: Selective pressurized liquid extraction of estrogenic compounds in soil and analysis by gas chromatography – mass spectrometry. „Anal. Chim. Acta”, 2011, 685, 29-35.
  • 41. Albero B. i wsp.: Analysis of natural-occurring and synthetic sexual hormones in sludge-amended soils by matrix solid-phase dispersion and isotope dilution gas chromatography – tandem mass spectrometry. „J. Chromatogr. A.”, 2013, 1283, 39-45.
  • 42. Bragança I. i wsp.: QuEChERS: A new sample preparation approach for the determination of ibuprofen and its metabolites in soils. „Sci. Total Environ.”, 2012, 433, 281-289.
  • 43. Antonić J., Heath E.: Determination of NSAIDs in river sediment samples. „Anal. Bioanal. Chem.”, 2007, 387, 1337-1342.
  • 44. Rice S.L., Mitra S.: Microwave-assisted solvent extraction of solid matrices and subsequent detection of pharmaceuticals and personal care products (PPCPs) using gas chromatography–mass spectrometry. „Anal. Chim. Acta”, 2007, 589, 125-132.
  • 45. Xu J. i wsp.: Simultaneous determination of pharmaceuticals, endocrine disrupting compounds and hormone in soils by gas chromatography–mass spectrometry. „J. Chromatogr. A.”, 2008, 1202, 189-195.
  • 46. Chen F. i wsp.: Distribution and accumulation of endocrine-disrupting chemicals and pharmaceuticals in wastewater irrigated soils in Hebei, China. „Environ. Pollut.”, 2011, 159, 1490-1498.
  • 47. Vazquez-Roiga P. i wsp.: Determination of pharmaceuticals in soils and sediments by pressurized liquid extraction and liquid chromatography–tandem mass spectrometry. „J. Chromatogr. A.”, 2010, 1217, 2471-2483.
  • 48. Azzouz A., Ballesteros E.: Combined microwave-assisted extraction and continuous solid-phase extraction prior to gas chromatography–mass spectrometry determination of pharmaceuticals, personal care products and hormones in soils, sediments and sludge. „Sci. Total Environ.”, 2012, 419, 208-215.
  • 49. Salvia M.V. i wsp.: Development of a multi-residue method using acetonitrile-based extraction followed by liquid chromatography–tandem mass spectrometry for the analysis of steroids and veterinary and human drugs at trace levels in soil. „J. Chromatogr. A.”, 2012, 1245, 122-133.
  • 50. Kumirska J. i wsp.: Simultaneous determination of non-steroidal anti-inflammatory drugs and estrogenic hormones in environmental solid samples. „Sci. Total Environ.”, 2015, 508, 498-505.
  • 51. González-Curbelo M.Á. i wsp.: Evolution and applications of the QuEChERS method. „Trends Anal. Chem.”, 2015, 71, 169-185.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3c8d4945-d9b2-47d4-a82b-7f6865adec43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.