Warianty tytułu
Języki publikacji
Abstrakty
The efficient recovery of the waste heat from the industrial sector can represent an essential step in global energy saving, with the proper usage of other on-grid power resources available for specific high-energy consumers. A simple, low–cost energy conversion system was tested here to recover a part of the waste heat dissipated by a gasoline engine’s exhaust pipe under the car’s stationary testing mode at temperatures around 80–100°C. The main components of this system were a copper–made thermal collector, a commercial thermoelectric energy generator (TEG) module TEC1–12706 and a pin-fin heat sink under natural air convection cooling. Under the open-circuit test, heat transfer rates between 4.54 W and 5.56 W were evacuated by the heat sink. A DC electronic load RL was connected at the TEG outputs, and voltage values between 0.566 V and 1.242 V were recorded for output power values between 0.03 W and 0.16 W when R,sub>L was modified from 1 Ω to 10 Ω.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
201--211
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Department or Physics and Electronics, Ovidius University of Constanta, Mamaia Bd. no. 124, 900527, Constanta, Romania, ionescu.vio@gmail.com
Bibliografia
- 1. Bian Q. 2020. Waste heat: the dominating root cause of current global warming, Environ Syst Res 9, 8–19.
- 2. Xia L., Liu R.M., Zeng Y.T., Zhou P., Liu J.J., Cao X.R., Xiang S.G. 2019. A review of low-temperature heat recovery technologies for industry processes, Chin. J. Chem. Eng. 27, 2227–2237.
- 3. Xu Z.Y., Wang R.Z., Yang C. 2019. Perspectives for low-temperature waste heat recovery, Energy 176, 1037–1043.
- 4. Cao Q., Luan W., Wang T. 2018. Performance enhancement of heat pipes assisted thermoelectric generator for automobile exhaust heat recovery. Appl Therm Eng, 130, 1472–9.
- 5. lbatati F., Attar A. 2021. Analytical and Experimental Study of Thermoelectric Generator (TEG) System for Automotive Exhaust Waste Heat Recovery. Energies, 14(1), 204–2018.
- 6. Meng J.-H., Gao D.-Y., Liu Y., Zhang K., Lu G. 2022. Heat transfer mechanism and structure design of phase change materials to improve thermoelectric device performance, Energy, 245, 123332.
- 7. Pfeiffelmann B., Benim A.C., Joos F. 2021. Watercooled thermoelectric generators for improved net output power: A Review. Energies, 14, 8329.
- 8. Alsaqoor S. 2023. Performance analysis of a thermoelectric cooler placed between two thermoelectric generators for different heat transfer conditions, Journal of Ecological Engineering, 24(4), 27–35.
- 9. Li L., Gao X., Zhang G., Xie W.Y., Wang F.F., Yao W. 2019. Combined solar concentration and carbon nanotube absorber for high performance solar thermoelectric generators. Energy Convers. Manag., 183, 109–115.
- 10. Sateikis I., Ambrulevicius R., Lynikiene S. 2010. Investigations of a micropower thermoelectric generator operating at a low temperature difference. Elektronika Ir Elektrotechnika, 106(10), 113–116.
- 11. Asaduzzaman Md., Ali Md. H., Nahyan A.P., Nafisa L. 2023. Exhaust heat harvesting of automotive engine using thermoelectric generation technology, Energy Conversion and Management: X, 19, 100398.
- 12. Mohiuddin A.K.M., Muhammad Y.A., Rahman A., Khan A.A. 2017. Investigation of aluminum heat sink design with thermoelectric generator, IOP Conf. Ser. Mater. Sci. Eng. 184, 012062.
- 13. Boccardi S., Ciampa F., Meo M. 2019. Design and development of a heatsink for thermoelectric power harvesting in aerospace applications. Smart Mater Struct, 28(10), 105057.
- 14. Yang Y.T., Peng H.S. and Hsu H.T. 2013. Numerical Optimization of pin-fin heat sink with forced cooling (Int. J. Electron. Commun. Eng.), 7, 884–91.
- 15. Kon H.S., Lee J.J., Lai C.Y. 2003. Thermal Analysis and Optimal Fin Length of a Heat Sink, Heat Transfer Engineering, 24(2), 18–29.
- 16. Ajiwiguna T.A., Nugroho R., Ismardi A. 2018. Method for thermoelectric cooler utilization using manufacturer’s technical information, AIP Conf. Proc. 1941, 020002. https://asset.re-in.de/ add/160267/c1/-/en/000189115DS02/DA_TRUComponents-TEC1-12706-Peltier-Element-15V- 6.4A-65W-L-x-B-x-H-40-x-40-x-3.8mm.pdf, accessed on 20.01.2024.
- 17. Ionescu V. 2023. Performance analysis of the thermoelectric power – generation system with natural convection cooling, Energy Reports 9, 123–130.
- 18. Ordonez J.C., Cavalcanti E.J.C. and Carvalho M. 2022. Energy, exergy, entropy generation minimization, and exergoenvironmental analyses of energy systems: A mini-review. Front. Sustain. 3, 902071.
- 19. da Silva, J.A.M., Ávila Filho, S. and Carvalho, M. 2017. Assessment of energy and exergy efficiencies in steam generators. J. Braz. Soc. Mech. Sci. Eng. 39, 3217–3226.
- 20. Alsaghir, A.M., Bahk J.H. 2023. Performance optimization and exergy analysis of thermoelectric heat recovery system for gas turbine power plants. Entropy, 25, 1583.
- 21. Alahmer A., Khalid M.B., Beithou N., Borowski G., Alsaqoor S., Alhendi H. 2022. An experimental investigation into improving the performance of thermoelectric generators, Journal of Ecological Engineering, 23(3), 100–108.
- 22. Cai Y., Wang W.W., Ding W.T., Yang G.B., Liu D., Zhao F.Y. 2019. Entropy generation minimization of thermoelectric systems applied for electronic cooling: Parametric investigations and operation optimization, Energy Conversion and Management, 186, 401–414.
- 23. Ali H., Yilbas B.S., Sahin A.Z. 2015. Exergy analysis of a thermoelectric power generator: influence of bi-tapered pin geometry on device characteristics, Int. J. Exergy, 16(1), 53–71.
- 24. Hsu C.T., Huang G.Y., Chu H.S., Yu B., Yao D.-J. 2011. Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators, Applied Energy, 88, 1291–1297.
- 25. Cho Y.H., Park J., Chang N., Kim J. 2020. Comparison of cooling methods for a thermoelectric generator with forced convection. Energies, 13, 3185.
- 26. Kim S. 2013. Analysis and modeling of effective temperature differences and electrical parameters of thermoelectric generators, Applied Energy, 102, 1458–1463.
- 27. Min G. 2014. Principle of determining thermoelectric properties based on I-V curves. Meas Sci Technol, 25, 85009–85015.
- 28. Yu C., Chau K.T. 2009. Thermoelectric automotive waste heat energy recovery using maximum power point tracking, Energy Conversion and Management, 50, 1506–1512.
- 29. Sukor A.S.A., Cheik G.C., Kamarudin L.M., Mao X., Nishizaki H., Zakaria A., Syed Zakaria S.M.M. 2022. Predictive analysis of in-vehicle air quality monitoring system using deep learning technique. Atmosphere, 13, 1587.
- 30. Mohammadnia A., Rezania A. 2023. Compatibility assessment of TEGs arrangement coupled with DC/DC converter to harvest electricity from lowtemperature heat sources, Energy Conversion and Management: X 18, 100356.
- 31. Mansour M.A., Beithou N., Othman A., Qandil A., Khalid M.B., Borowski G., Alsaqoor S., Alahmer A., Jouhara H. 2023. Effect of liquid saturated porous medium on heat transfer from thermoelectric generator, Int. J. Thermofluids, 17, 100264.
- 32. Rajaseenivasan T., Srithar K. 2016. Performance investigation on solar still with circular and square fins in basin with CO2 mitigation and economic analysis, Desalination, 380, 66–74.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3c088611-600e-467b-bc1e-57c33ba1da27