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1. Introduction

Talc [Mg3Si4O10(OH)2] is a hydrous magnesium silicate 
with industrial, medical and cosmetic applications (Vitra 
1998; Borowski et al. 2015). It can form by different 
mineralogical reactions in ultramafic, mafic and dolomitic 
metasedimentary rocks. On this basis, talc deposits can 
be classified into the serpentinite-hosted and carbonate-
hosted deposits (Tosca et al. 2011; Ali-Bik et al. 2012). Talc 
forms from serpentine minerals in the hydrothermally 
altered ultramafic and mafic rocks. Serpentine changes 
to talc by influx of CO2-bearing hydrothermal fluids (Liu 
1986; Muraishi 1988).  Talc can form at the margins of a 
serpentinite body in contact with the country rocks (Gil 
et al. 2022). Dolomitic marble reacted with quartz and 
water-rich or Si-rich fluids, produces talc (Pieczka et al. 
1998; Wilamowski, Wiewiora 2004; Saccocia et al. 2009; 
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Woguia et al. 2021). Apart from the industrial importance, 
study of talc-bearing rocks can provide insights on 
the nature of high-pressure and low-temperature 
metamorphism and possible fluid recycling within the 
mantle by talc-bearing assemblages subduction (Zhang 
et al. 1995). Spandler et al. (2008) studied the talc-
bearing blueschists and eclogites from New Caledonia 
and concluded that they subducted to depths of up to 
70 km with potential to transport significant amounts of 
H2O to greater depths than serpentinite. Schreyer and 
Abraham (1975) studied high pressure assemblages of 
kyanite-gedrite and kyanite-talc from the Sar e Sang area 
of Afghanistan and talc formation in these rocks. 

Abraham and Schreyer (1976) attributed the talc and 
phengite rocks in Piemontite Schist from Serbia to 
formation under very high-water pressures. 
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Figure 1. Geological Map of the Southwestern Pamirs (modified from 
Vlasov et al. 1991, Schwab et al. 2004 and Angiolini et al. 2013). The 
study area is indicated by a box.

Talc is significant in geological studies also for its role 
in weakening the crust in regional-scale fault systems. 
Interconnected films of talc require small volume 
fractions to attain the frictional weakness in the fault 
zones (Moore, Rymer 2007). Collettini et al. (2008) 
reported talc plus serpentinites, tremolite and chlorite in 
the high strain regions of a fault core, which can weaken 
the fault zone and facilitate creeping. Talc can also be 
associated with mineralization. A good example is the 
Rędziny deposit in Sudetes, Poland which comprises 
a weathered polymetallic mineralization in dolomitic 
marbles, where talc is formed along with Ca-Fe arsenate, 
arsenopyrite and quartz (Pieczka et al. 1998) Talc occurs 
in SW Pamir Mountains of Tajikistan. Talc is formed in the 
ultra-magnesian rocks in this area along with kyanite, 
magnesio-hornblende, tourmaline and rare quartz. 
Grew et al. (1994, 1998) reported kornerupine-bearing 
rocks from three localities in SW Pamir Mountains in 
Kuhi-lal, Darai-Stazh and Mulvoj. Kornerupine occurs 
with all these minerals (Grew et al. 1998). They propose 
a prograde metamorphism at 650°C and 7 kbar for the 
formation of assemblages containing the most mineral 
phases (Grew et al. 1998). Considerable amount of talc 
mineralization in dolomitic layers in gneissic rocks in the 
Mulvoj area produced economically valuable deposits, 
similar to those in the Nangahar province of Afghanistan 
(Tahir et al. 2018). The main minerals in the Mulvoj 
talc mine are dolomite, quartz, calcite and tremolite. 
Field relations, petrography and geochemistry of these 
rocks are studied here to provide new data on protolith 
and CO2 mole fraction and temperature conditions of 
formation of talc.   

2. Geological Setting

Pamir Mountains are part of the Alpine-Himalayan 
orogen, located at convergence of Tien Shan, Karakoram, 
and Hindu Kush (Ruzhentsev, Shvolman 1981; Hubbard 
et al. 1999). Middle to Late Eocene metamorphism in 
the Pamir brought about by crustal thickening and 
pressure and temperature increase associated with 
the India–Eurasia collision (Fraser et al., 2001). Based 
on stratigraphical, lithological, and structural features, 
Pamir is divided into Northern Pamir, Central Pamir 
and Southern Pamir in Tajikistan (Burtman, Molnar 
1993). The northern Pamir, which records a Pre to 
Late Carboniferous ocean basin, separates the Central 
Pamir from northern Eurasian lands by Palaeozoic 
sutures (Hildner 2003). The Kunlun arc and related arc 
magmatism (Jiang et al. 2008) indicate the subduction 
and following collision sutures (Fig. 1). The Central 
Pamir (Fig. 1) mainly consists of metamorphosed 
and deformed Precambrian and Palaeozoic rocks. 
It shares many similarities with Western Hindu Kush 
and represents more likely a continental fragment 
which collided with Eurasia in Permian following the 
closure of the Carboniferous oceanic basin (Rembe 
et al. 2021). Southern Pamir is separated from the 
Central Pamir by Rushan-Pshart Mesozoic suture 
(Fig. 1), which is characterized by Permian to Triassic 
marine sediments and ophiolitic rocks composed 
of pillow basalt, chert, andesite and serpentinized 
peridotite lenses (Zanchetta et al. 2018). The Southern 

Pamir is divided into South-eastern Pamir and the 
South-western Pamir. South-eastern Pamir consists 
of a Late Carboniferous to Early Permian sedimentary 
sequence made up by siltstone, clay. Sandstone, and 
limestone, covered by Triassic limestone, radiolarite 
and siltstone, and eventually by unconformable Jurassic 
limestone (Kukhtikov, Vinnichenko 2010). South Pamir 
experienced metamorphism at 750-800°C at a depth of 
~55 km (Hacker et al. 2017). The South-western Pamir is 
similar to the Central Pamir in terms of rock types and 
deformation and metamorphism (Pashkov, Budanov 
1990). The main rock types are metamorphosed rocks, 
intruded by several Mesozoic and Paleogene granitoids 
(Fig. 1). Drugova et al. (1976) and Kiselyov and Budanov 
(1986) propose an early granulite facies metamorphism 
for the South-western Pamir at 750°C temperature 
and 9.7 Kbar pressure, followed by a lower grade 
metamorphism at 600 to 650°C temperature and 3.5 to 
5.5 kbar pressure. Grew et al. (1994) also suggest two 
stages of metamorphism in the South-western Pamir. 
The first phase was a moderate-pressure amphibolite 
facies at 650°C and ~7 kbar, followed by a decompression 
metamorphism at 5 kbar and slightly higher temperature 
of 650-700°C. Pamir peak metamorphism occurred 
during the Late Oligocene to Early Miocene (Searle et al. 
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2010). Peak metamorphism was followed by exhumation 
of a series of extensional gneiss domes in the Southern 
and Central Pamir terranes, that lasted until the Late 
Miocene to Early Pliocene (Stübner et al. 2013). Included 
among these gneiss domes are the Shahdara dome in 
the South-western Pamir terrane and the Yazgulem and 
Sarez domes in the Central Pamir terrane (Fig. 1). The 
largest area of Cenozoic mid to lower-crustal rocks in the 
Pamir are exposed in the Shahdara dome (Stearns et al. 
2015), which is dominated by orthogneiss and granitoids 
(Schwab et al. 2004) and biotite and muscovite-rich 
schists. 

The Mulvoj area mainly consists of foliated and folded 
high-grade gneiss and schist, with intercalations of 
dolomitic marble layers (Fig. 2), ranging from about 
10 cm to few ten meters in thickness (Fig. 3A,B). The 
main minerals in gneiss are quartz, plagioclase, garnet, 
biotite, kyanite and sillimanite. It shows distinct 
gneissosity and occasional folding (Fig. 3C). The rocks 
are mainly fresh with minimum alteration effects and 
pale in colour in the field exposures. The schistosity in 
the pelitic schist is materialized by abundant oriented 
biotite flakes. Other minerals are quartz, occasionally 
sillimanite and rare plagioclase and opaque minerals. 
The lack of muscovite and chlorite in the schists supports 
their high-grade nature. Dolomitic marble is pale 
yellow in colour and appears as distinct layers. Marbles 
of the Mulvoj area contain relatively large amphibole 

(tremolite) crystals (Fig. 3D), which are aligned parallel 
in dolomitic marbles, indicating lineation in the rock 
due to deviatoric stress during their formation. Some 
patches of almost pure calcite can be found in the field. 
These calcite patches appear as well-crystallized calcites 
with rhombohedral structure (Fig. 3E). Talc appears as 
pure mineral in the field and it is along with calcite in 
considerable amounts (Fig. 3F) Mining to extract talc 
was active during the Soviet time in the Mulvoj area. 
The mine is at an elevation of ~800 m from the village 
level in a rough topography. Metal pillars and wires 
were used to carry talc ore from the mine site to the 
village. Figures 3G and H show some remaining mining 
structures in the area.

3. Samples and analytical methods

More than 30 samples of the talc and associated rocks 
were collected during two fieldworks in the Mulvoj 
area of the Ishkashim district in SW Pamir, during spring 
and autumn 2021. 15 thin sections were made from 
the selected samples for petrography studies. Whole 
rock major elements were analysed in 5 talc samples 
and one dolomitic marble, using X-ray fluorescence 
(XRF) method. The samples were crushed to less than 
5mm in a steel jaw crusher and then were pulverized 
in a disc mill equipped with a tungsten carbide milling 
cup to <60μm. 0.5 g of powdered rock sample was 
mixed with Lithium-tetraborate (Li2B4O7) to make glass 

Figure 2. Simplified geological map of the Mulvoj area in the Ishkashim district of Tajikistan (Based on Vlasov et al. 1991). 
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beads. The beads were used for XRF analyses. Then 
they were dissolved using microwave-assisted multi-
acid digestion in a mixture of pure nitric, hydrofluoric, 
and hydrochloric acids. The solution was used to 
analyse trace elements after required dilution using 
a Perkin Elmer SCIEX ELAN 6000 inductively coupled 
plasma mass spectrometer. International and internal 
standards were used for the calibrations. The results 
for major, minor and trace elements are shown in 
Tables 1 and 2, along with the detection limit for each 
method and element. One sample of talc deposit 
from the study area was analysed by X-ray diffraction 
(XRD, Phililps PW1730) diffractometer to find out the 
mineral composition. The powdered pellet of sample 
was pressed using a hydraulic press. CuKα 0.15418 nm 

radiation was generated using the Phillips PW1730 
X-ray generator operated at 40kV and 30mA. Sample 
preparation and analyses were carried out in the Earth 
and Environmental Sciences laboratory of University 
of Central Asia in Khorog, Tajikistan and Zarazma 
Laboratories in Iran.

4. Results 

4.1. Petrography 

Mulvoj dolomitic marbles have a simple mineralogy 
and are made from dolomite (Dol) as the main mineral 
phase. Dolomite shows equigranular and mosaic texture 
(Fig. 4A), consistent with crystallization at temperature 

Figure 3. Field photos from the metamorphic rocks in the Mulvoj area. (A) Dolomitic marbles within the gneiss and schist. (B) Large open fold 
in the metamorphic rocks. (C) Tight folds in gneiss. (D) Tremolite along with carbonate in the dolomitic marble. (E) Rhombohedral pure calcite. 
(F) Talc in the Mulvoj mine site. (G) and (H) Remaining of old mining metal zip-lines and pillars.  
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of ~500°C (e.g. Covey-Crump, Rutter 1989) during 
metamorphism. It is characterized by its cleavage and 
twinning planes under the microscope (Fig. 4A). Other 
mineral phases in the rocks are amphibole (Amph), 
rare quartz (Qtz), opaque minerals (Ore) and titanite 
(Ttn). Amphibole is the second abundant mineral in the 
studied marble samples. It ranges from 1mm to 5mm 
in size (Fig. 4B) and is colourless in the plain polarized 
light, indicating high Mg and low Fe content. This 
classifies amphibole in the Mulvoj marble as tremolite 
(Tr). Quartz appears as minor phase in the samples 
(Fig. 4A). Titanite (sphene) appears as wedge-shaped 
tiny crystals (~0.2mm across) to relatively large (1.5 mm 
across) grains in the rocks (Fig. 4C). It formed in textural 
equilibrium with other minerals in the rocks, since is well-
crystalized and is in mutual contact with other minerals. 
Opaque minerals are more likely Fe-Ti oxides. Talc (Tlc) 
appears along with rare amount of calcite (Fig. 4D). 
Microscopic studies on eight samples of the Mulvoj 
area (from different outcrops and layers in one outcrop) 
shows that dolomite appears along with quartz in some 
samples with occasional occurrence of tremolite. Talc is 
accompanied by either calcite or calcite and quartz in the 
studied rocks. No equilibrium assemblages containing 
both calcite and dolomite was observed in the studied 
samples. Based on these observations, the main mineral 
assemblages in eight studies samples of the dolomitic 
marble can be classified as follows.

Dol+Tr±Qtz [1]

Tlc+Cal [2]

Tlc+Qtz+Cal [3]

4.2. Mineralogy and geochemistry 

One sample of talc from the study area was analysed by 
XRD method to find out the mineral composition. XRD 
graph with mineral phase peaks is shown in Figure 5A. 
As shown in the graph, talc is the main mineral in the 
studied sample. 

Chemical composition of five samples from Mulvoj 
talc along with one dolomitic marble are provided in 
Tables 1 and 2. As it can be seen in Table 1, the SiO2 
content for the talc samples ranges from 59.73 to 61.07 
wt%, while the SiO2 content for the marble sample is 
3.21 wt% (Table 1). The MgO contents for talc samples 
range from 31.98 to 33.21 wt% and Fe2O3 content (as 
whole Fe in the samples) has very low amounts of 0.59 
to 0.75 wt%. The contents of CaO, TiO2, Al2O3, Fe2O3, 
MnO, Na2O, K2O and P2O5 are low and range from 
<0.5 to 1.35 wt%. The CaO and MgO contents for the 
marble sample is 29.07 and 20.76 wt% respectively, 
characterizing it as dolomitic rock. Whole-rock trace 
element concentrations are given in Table 2. Most of the 
trace elements have similar concentration for all three 
analysed samples. The Ce and La contents in all samples 
are equal to 1 ppm, while the Y, Be, Cr, Zn and Zr contents 
are below the detection limit of the method used. 

5. Discussion

5.1. Mineralogy

XRD analyses indicate almost pure talc for the samples 
from the Mulvoj mine (Fig. 5A). Commonly chlorite can 
be found along with talc in dolomite-hosted talc deposits 

Figure 4. Microscopic photos from different rock types in the Mulvoj area. (A) Dolomite with minor quartz. (B) dolomite, opaque minerals 
and idioblastic amphibole (tremolite) in a metamorphic dolostone. (C) Relatively large titanite in textural equilibrium with dolomite. (D) Talc 
sample with minor calcite.  
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Figure 5. (A) XRD pattern for the studied talc sample. The vertical axis shows the intensity of peaks (proportional to the amount of the mineral 
phase in the studied sample) and the horizontal axis shows the 2Ɵ angle of the X-ray diffraction, which is indicative of the mineral phase. The 
sample is composed almost entirely from talc. (b) Classification of Mulvoj talc based on chlorite and carbonate content. Some talc occurrences 
are shown for comparison (Afghanistan from Tahir et al. 2018; Trimouns, France from Boutin et al. 2016; Montana, USA from Anderson et al., 
1990; Austria, from Prochaska, 1989, Finland from GTK. www.gtk.fi).  

Table 2. Trace and rare earth element (REE) composition of the analysed talc samples by ICP-MS; all in ppm.

Sample DL* MVJ1 MVJ2 MVJ3 Sample DL MVJ1 MVJ2 MVJ3
Ag 0.5 <0.5 <0.5 <0.5 Pb 1 4 4 4

As 5 1.5 1.5 1.4 Sb 5 0.88 0.79 0.86
Be 1 <1 <1 <1 Sc 0.5 0.8 0.8 0.7
Cd 0.1 0.35 0.34 0.35 Sr 2 6 6 6
Ce 1 1 1 1 Th 5 <5 <5 <5
Co 1 1 <1 1 U 5 <5 <5 <5
Cr 1 <1 <1 <1 V 1 12 12 11
Cu 1 3 2 2 Y 0.5 <0.5 <0.5 <0.5
La 1 1 1 1 Yb 0.2 0.2 0.2 0.2
Li 1 16 17 16 Zn 1 <1 <1 <1
Mo 0.5 0.55 0.53 0.55 Zr 5 <5 <5 <5
Ni 1 11 9 9

*DL = Detection limit, ppm

Table 1. Major oxides of the studied samples by XRF (wt%).

Sample No. Detection MVJ1 MVJ2 MVJ3 MVJ4 MVJ5 MVJ6

Rock type Limit (wt %) Talc Talc Talc Talc Talc Marble
SiO2 0.05 60.76 61.07 60.41 59.73 60.12 3.21
TiO2 0.05 0.08 0.08 0.07 0.07 0.08 <0.05
Al2O3 0.05 1.35 1.26 1.14 1.14 1.18 1.28
BaO 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
CaO 0.05 0.19 0.12 0.14 0.19 0.18 29.07
Fe2O3* 0.05 0.64 0.71 0.75 0.61 0.59 0.62
K2O 0.05 0.31 0.32 0.30 0.29 0.31 <0.05
MgO 0.05 32.29 33.21 31.98 32.55 32.64 20.76
MnO 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.17
Na2O 0.05 0.27 0.22 0.30 0.27 0.29 0.19
P2O5 0.05 <0.05 <0.05 0.06 <0.05 <0.05 0.09
SO3 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
Total - 95.89 96.99 95.15 94.85 95.39 55.39

*all Fe as Fe2O3.
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(e.g., Moine et al. 1989; Schärer et al. 1999) and can 
form intergrowth with talc (Veblen 1983). No chlorite 
was found under the microscope or in the XRD studies 
in the Mulvoj talc samples. The lack of chlorite in our 
samples can be attributed to the low Al2O3 (1.28 wt%) 
content in the protolith marble.  Figure 5B illustrates 
the mineralogical composition of the studied samples 
in the ternary diagram of talc-chlorite and carbonate/
other minerals. Some talc deposits of the world are 
shown for comparison. Mulvoj talc is almost pure with 
low carbonate content and is similar to talc deposits 
from Afghanistan in this regard (Tahir et al. 2018). 
Hydration of ultramafic rocks produces talc along with 
serpentine (usually antigorite, Bucher, Grapes 2011). No 
serpentine was found in the studied samples, testifying 
for non-ultramafic protolith. Moreover, the absence 
of serpentine group minerals indicates that talc in the 
Mulvoj mine crystalized directly from reaction between 
dolomite and quartz in the presence of water-rich fluid 
(Tosca et al. 2011; Bjerga et al. 2015).

5.2. Geochemical features

Geochemically, the composition of talc is diagnostic for 
its protolith type (e.g., ultramafic and Mg-carbonate; 
Prochaska 1989). Talc formed from minerals in ultramafic 
rocks hydration is enriched in Ni, Fe and Cr, compared 
to Mg-carbonate hosted talc (Prochaska 1989). Large 
ionic lithophile elements such as K and Li, indicative 
of crustal components, are usually higher in content in 
talc formed from Mg-carbonates (Yalçin, Bozkaya 2006). 
Mulvoj talc samples are rich in MgO and poor in Al2O3 
and Fe2O3 (t) (Fig. 6). Major oxides such as TiO2, Fe2O3(t) 
and MnO and minor elements such as Cr are strikingly 
low in the studied samples (Table 1), compared to talc 
formed from serpentine minerals hydration. Na2O (0.22 
to 0.30 wt%) and K2O (0.29-0.32) contents are instead 
relatively high, while Na2O and K2O contents of talc from 
hydration of peridotites are very low, mainly below the 
detection limits (Moine et al. 1989) of the conventional 
analytical methods used. Such geochemical features 
are in accordance with a sedimentary origin and show 
that the Mulvoj talc did not originate from peridotites. 

Mineral assemblage of talc-bearing rocks confirms 
this.  Figure 7A shows concentration of some elements 
in the studied samples normalized to chondrite 
(normalization values are from McDonough, Sun 1995). 
Mulvoj samples show enrichment in Ti, K, Li and Pb, 
compatible with crustal material source. In particular 
Ti enrichment is materialized by the relative abundance 
of titanite in the studied rocks. One peridotite talc rock 
from Sivas, Turkey and one serpentinite-hosted talc 
sample from the Gilów deposit, WS Poland are shown 
for comparison. As visible in Fig. 7a, the concentration 
of studied elements in the Mulvoj samples are distinctly 
different from samples of Turkey and Poland. Figure 7B 
illustrates upper continental crust composition (Taylor, 
McLennan 1985) normalized diagram for the studied 
samples and samples from Turkey and Poland. Li, Mo, Ni, 
Pb and Ti show concentration in the samples similar to 
their concentration in the upper continental crust (close 
to 1), while La, Ce, Sr and Sc show relative depletion. 
Carbonate minerals can incorporate considerable 
amounts of Sr and incompatible elements (Andersson et 
al. 2014; Littlewood et al. 2017). Sr usually concentrates 
in carbonate or similar to La and Ce, can replace Ca in 
other Ca-bearing minerals (e.g., Vodyanitskii 2012). 
Low Sr, Ce and La contents can be attributed to the low 
concentration of Ca-bearing minerals in the analysed 
talc samples and/or the lack of intergrowth between 
Ca-bearing minerals (such as Ca-amphibole) and talc 
(e.g. Müller et al. 2003). Talc samples from Turkey and 
Poland, formed from peridotites, show different trends 
in Fig. 7b.

Pb, Cd and As are among the hazardous elements for 
human health as they pose several health problems. 
Recommended heavy elements content in talc, including 
Pb, in pharmacopeia is <10 ppm (TEP, 2005; TUSP, 2009). 
The Pb content is 4 ppm for all studied samples, the Cd 
content varies from 0.34 to 0.35 ppm and the As content 
is 1.4 to 1.5 ppm in Mulvoj talc samples. U and Th are 
radioactive elements and pose treat to human health. 
Uranium anomaly is reported around the Shinbo talc 
mine in Korea (Chung et al. 1998). Talc contamination 
with high-U bearing minerals can affect the suitability 
of talc in pharmaceutical and cosmetic applications.  
U and Th contents in the studied samples are below 
the detection limit of the used ICP-MS method. These 
chemical features make Mulvoj talc suitable in terms of 
possible application in medical and cosmetic materials 
production. 

5.3.   Mineral phase relations, reactions and T-XCO2 
estimate

Sedimentary carbonate rocks are predominantly 
composed of dolomite, calcite and quartz. This mineral 
assemblage is characteristic of simple CaO-MgO-SiO2-
CO2 metamorphic system. Hydrous minerals in the 
metamorphosed carbonate rocks are commonly talc 
and tremolite. The H2O necessary for the formation 
of these phases can be provided either from the pore 
fluids in the rocks or by infiltration into the rocks from 
the external sources (Ague 2003; Moazzen et al., 2009; 
Bucher, Grapes 2011). Pressure and temperature 

Figure 6. Al2O3-Fe2O3(T)-MgO diagram classifies the Mulvoj talc as 
Mg-rich talc with very small Fe and Al content. 
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Figure 7. (A) Selected elements concentration in the Mulvoj talc samples normalized to the chondrite values (McDonough, Sun 1995). 
(B)  Elements concentration patterns normalized to the upper continental crust values (Taylor, McLennan 1985). Peridotite-related samples 
from Turkey (Yalçin, Bozkaya 2006) and Poland (Gil et al. 2022) are shown for comparison. 

estimation of peak metamorphism in these rocks 
usually is problematic due to their simple mineral 
assemblages, the limited number of minerals in 
thermodynamic equilibrium (caused by the high degree 
of freedom in the metamorphic system), as well as 
the presence of a binary fluid (H2O-CO2). Hence, most 
conventional mineral geothermobarometric methods 
applicable for meta-basic and meta-pelitic rocks cannot 
be applied to the meta-carbonates (e.g. López Sánchez-
Vizcaıno et al. 1997). The only minor phase potentially 
suitable for temperature estimation is titanite as Zr 
content in titanite is used as a thermometer (Hayden 
et al. 2007). This thermometer is only applicable to 
system saturated in Zr (zircon) in the rocks. However, 
no zircon was found in the studied samples, hindering 
using this thermometer. Equilibrium reactions among 
mineral phases distinguished in the studied samples are 
therefore used to estimate the temperature and XCO2 
during formation of talc, tremolite and calcite in the 
studied rocks.  

According to the petrography and XRD studies, the 
main minerals in the Mulvoj samples are calcite (Cal), 
dolomite (Dol), quartz (Qtz), and tremolite (Tr). The 
phase relations among these minerals can be studied in 
the CMSH-CO2 system, where C is CaO, M is MgO, S is 
SiO2, and H is H2O. Considering H2O and CO2 as excess 
phases in the system, CMS components can be shown by 

a triangular phase diagram (Fig. 8). The arrangement of 
different tie lines (e.g. Dol-Qtz, Dol-Tlc, Tr-Cal…) defines 
the sequence of the following mineral reaction:

Dol+Qtz+H2O = Tlc+Cal+CO2 [1]

Tlc+Qtz+Cal = Tr+H2O+CO2 [2]

Since dolomite along with tremolite is a common 
minerals assemblage in the studied rocks, based on 
petrographic studies, the high temperature breakdown 
reaction of calcite and talc can be considered to form 
tremolite and dolomite (reaction curve 3 in Fig. 9).

Cal+Tlc = Tr+Dol+H2O+CO2 [3]

We propose that these reactions were responsible for 
formation of talc and tremolite in the Mulvoj rocks. 
All reactions are binary-fluid reactions (H2O-CO2) with 
CO2 release (e.g., Moazzen et al. 2009). More likely, 
H2O is provided from the adjacent metamorphic pelitic 
rocks (mica schists). Reaction curves in the T-XCO2 
diagram (Fig. 9), constructed using thermodynamic 
data set of Berman (1988) and considering non-
ideal mixing of H2O-CO2, used to estimate the T-XCO2 
relations for the studied rocks (Tahir et al. 2018). 
The stability field of talc in terms of temperature and 
XCO2 (mole fraction of CO2 in the fluid) is studied by 
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Gordon and Greenwood (1970), Skippen (1971, 1974) 
and Slaughter et al. (1975). Talc is stable at pressure 
greater than 2 kbar and temperature up to ~460°C and 
XCO2 up to 0.6 (Fig. 9). The diagram shows that there 
is a direct relation between the talc crystallization 
temperature and XCO2 value. Talc can form at much 
lower temperatures (350°C) when XCO2 values are 
low enough. Other factors including pressure and 
talc composition (especially Mg/Fe ratio in talc) will 
control its crystallization temperature. 

Calcite reacting with talc forms tremolite as a univariant 
reaction. It is possible to have talc and tremolite in 
samples as a univariant mineral assemblages, but they 
do not appear in the studied samples. This is more likely 
due to very limited exposure of the assemblage in the 
study area. 

Talc formation by precipitation from hydrothermal fluids 
(Boutin et al. 2016) can be postulated for the Mulvaj 
area. Aqueous SiO2 and Mg2+ in fluid react with carbonate 
to form talc. This reaction releases H+ (Boutin et al. 
2016). There is no evidence for Mg2+ metasomatism or 
presence of aqueous SiO2 in the Mulvoj area (e.g., silica 
veins accompanying talc mineralization). The released 
H+ can cause acidic alteration, which is not the case in 
the Mulvoj area.  

Talc forms during metasomatism by fluid infiltration 
from the crystallizing pluton into the siliceous dolomitic 
rocks within the contact aureole (e.g., Chatir et al. 2022). 
No evidence of contact metamorphism observed in the 
studied rocks under the microscope. Furthermore, the 
Cretaceous intrusive rocks are at considerable distance 
from the Mulvoj area (Fig. 1), which rules out a contact 
metamorphic origin for the studied talc deposit. 

Previous studies proposed a peak metamorphic event at 
650°C to 750°C at ca. 7 to 9.7 kbar in the area (Kiselyov, 
Budanov 1986; Grew et al. 1994). No high-grade relict 
minerals (e.g. clinopyroxene, olivine, wollastonite) were 
observed in the studied metamorphic dolomitic marbles. 
This implies that the talc-bearing samples are not result 
of a retrograde metamorphism of high grade rocks. Talc 
and tremolite formation can be explained by a relatively 
low temperature trajectory of a prograde regional 
metamorphism at temperature <460°C, in which H2O 
was provided from dehydration metamorphic reactions 
of the interlayered pelitic (schist) rocks. 

6. Conclusions

Talc in the Mulvoj area of the Ishkashim district occurs 
in high-grade marble as interlayers in the South-western 
Pamir gneiss and schist. According to the petrography 
observations and XRD analyses results, talc is the main 
mineral in the deposit with subordinate amounts of 
quartz, calcite and amphibole. Geochemical studies 
indicate almost equal contents of CaO and MgO for 
marble, classifying it as dolomitic marble. Considering 
the minerals in dolomitic marble and talc samples, three 
main mineralogical reactions were responsible for talc 
and tremolite crystallization. The reaction at relatively 
lower temperature consumes dolomite, quartz and 
H2O to produce talc, calcite and carbon dioxide, the 
reaction at relatively higher temperature and almost 
similar XCO2 consumes talc, quartz and calcite to produce 
tremolite, H2O and carbon dioxide. The reaction at 
higher temperature produces tremolite and dolomite 
by talc and calcite breakdown. Co-existence of talc 
and calcite and also talc and tremolite in the studied 

Figure 9. Temperature-XCO2 diagram for talc formation in the siliceous 
system with binary H2O-CO2 fluid (Tahir et al. 2018). Stability field for 
talc + calcite and talc + calcite + tremolite are indicated. 

Figure 8. Phase relations for the studied rock samples in the CMSH-CO2 compatibility diagrams with H2O and CO2 as the excess phases. 
Tie lines define the mineral reactions. (A): Dol+Qtz assemblage, (B): Tlc+Cal±Qtz assemblage (C): Tr-forming reaction. 
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samples put constraints on temperature-CO2 mole 
fraction (T-XCO2) of formation of the mineral assemblages 
of ~340°C up to ~460°C and XCO2 from zero (pure water) 
up to 0.6. This study shows that Mulvoj talc is a marble-
hosted talc occurrence and is not related to ultramafic 
rocks, formed at the low-T trajectory of a prograde 
metamorphism. Most of the deposit is mined during the 
Soviet time and the remaining of the talc deposit is not 
considerable. Therefore, the mine cannot be considered 
economically valuable, however there is possibility for 
further exploration and extraction if the demand for 
talc increases. This will need considerable investment 
to do more prospecting, re-building the road and re-
constructing the metal zip-line.  
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