Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 68, iss. 4 | 1349--1355
Tytuł artykułu

Micromechanical Modeling of Polyamide 11 Nanocomposites Properties using Composite Theories

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of organically modified clays as nano-reinforcement in polymer matrices is widely investigated owing to their remarkable reinforcement at low filler loading. In this body of work, the nanocomposites were prepared by melt blending nanoclay with polyamide 11 (PA 11) utilising a twin-screw extruder in order to maximise the dispersion of clay particles within the matrix during compounding. The main aim of the work was to study the reinforcing effect of nanoclay within PA 11 using two micromechanical model namely Halpin-Tsai and Mori-Tanaka composite theories. These theories were used to predict the effective tensile modulus of PA 11 nanocomposites and the results were compared to the experimental data. In addition, the Halpin-Tsai model was used to predict the storage modulus and heat distortion temperature (HDT) of PA 11 nanocomposites. It was found that the tensile modulus for nanocomposites with a high clay aspect ratio exhibits up to 10% higher when compared to the nanocomposites with lower clay aspect ratio. Thus, it is believed that the combination of clay aspect ratio and modulus contributes to the super reinforcing effect of nanoclay within the PA 11 matrix.
Wydawca

Rocznik
Strony
1349--1355
Opis fizyczny
Bibliogr. 26 poz., fot., rys., tab., wzory
Twórcy
  • Universiti Malaysia Perlis, Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), 01000 Perlis, Malaysia, kanwar@unimap.edu.my
  • Universiti Malaysia Perlis, Faculty of Chemical Engineering and Technology, Kompleks Pusat Pengajian Jejawi 3, Kawasan Perindustrian Jejawi, 02600, Arau, Perlis, Malaysia
  • Athlone Institute of Technology, Dublin Road, Co. Westmeath, Ireland
  • Universiti Malaysia Perlis, Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), 01000 Perlis, Malaysia
  • Universiti Malaysia Perlis, Faculty of Chemical Engineering and Technology, Kompleks Pusat Pengajian Jejawi 3, Kawasan Perindustrian Jejawi, 02600, Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis, Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), 01000 Perlis, Malaysia
  • Universiti Malaysia Perlis, Faculty of Chemical Engineering and Technology, Kompleks Pusat Pengajian Jejawi 3, Kawasan Perindustrian Jejawi, 02600, Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis, Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), 01000 Perlis, Malaysia
  • Universiti Malaysia Perlis, Faculty of Chemical Engineering and Technology, Kompleks Pusat Pengajian Jejawi 3, Kawasan Perindustrian Jejawi, 02600, Arau, Perlis, Malaysia
autor
  • Universiti Tun Hussein Onn Malaysia, Research Centre for Soft Soil (RECESS), Institute of Integrate d Engineering, 86400 Parit Raja, Johor, Malaysia
Bibliografia
  • [1] l.S. Schadler, Polymer-based and Polymer-filled nanocomposites, in Nanocomposite Science and Technology, P.M. Ajayan, L.S. Schadler, and P.V. Braun Eds. Weinhem: WILEY-VCH Verlag, 77-144 (2003).
  • [2] M. Okamoto, Polymer/Layered Silicate Nanocomposites (Rapra Review Reports, no. 14). Shrewsbury: Rapra Technology Limited, (2003).
  • [3] M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Materials Science and Engineering: R: Reports 28, 1-2, 1-63 (2000). DOI: https://doi.org/10.1016/s0927-796x(00)00012-7
  • [4] P.M. Ajayan, Nanocomposite Science and Technology, in Nano-composite Science and Technology, P.M. Ajayan, l.S. Schadler, and P.V. Braun Eds. Weinheim: WILEY-VCH Verlag, 1-2, (2003).
  • [5] T.D. Fornes, D.R. Paul, Modeling properties of nylon 6/clay nano-composites using composite theories, Polymer 44, 17, 4993-5013 (2003). DOI: http://dx.doi.org/10.1016/S0032-3861(03)00471-3
  • [6] Y.-P. Wu, Q.-X. Jia, D.-S. Yu, L.-Q. Zhang, Modeling Young’s modulus of rubber-clay nanocomposites using composite theories, Polymer Testing 23, 8, 903-909 (2004). DOI: http://dx.doi.org/10.1016/j.polymertesting.2004.05.004
  • [7] A. Zare-Shahabadi, A. Shokuhfar, S. Ebrahimi-Nejad, M. Arjmand, M. Termeh, Modeling the stiffness of polymer/layered silicate nanocomposites: more accurate predictions with consideration of exfoliation ratio as a function of filler content, Polymer Testing 30, 4, 408-414 (2011). DOI: https://doi.org/10.1016/j.polymertesting.2011.02.009
  • [8] S. Sinha Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Progress in Polymer Science 28, 11, 1539-1641 (2003). DOI: 10.1016/j.progpolymsci.2003.08.002
  • [9] T. Kojima, Synthesis of Nylon-6-clay Hybrid by Montmorillonite Intercalated with epsilon-Caprolactam, ed. Japan, 983-986 (1993).
  • [10] A.A. Okada, J.P. Fukushima, Yoshiaki (Aichi, JP), Kawasumi, Masaya (Aichi, JP), Inagaki, Shinji (Aichi, JP), Usuki, Arimitsu (Aichi, JP), Sugiyama, Shigetoshi (Aichi, JP), Kurauchi, Toshio (Aichi, JP), Kamigaito, Osami (Aichi, JP), Composite material and process for manufacturing same, United States Patent 4739007, 1988. [Online]. Available: http://www.freepatentsonline.com/4739007.html
  • [11] J.I. Weon, H.J. Sue, Effects of clay orientation and aspect ratio on mechanical behavior of nylon-6 nanocomposite, Polymer 46, 17, 6325-6334 (2005). DOI: https://doi.org/10.1016/j.polymer.2005.05.094
  • [12] Y. Zare, K.Y. Rhee, S.-J. Park, A developed equation for electrical conductivity of polymer carbon nanotubes (CNT) nanocomposites based on Halpin-Tsai model, Results in Physics 14, 102406 (2019). DOI: https://doi.org/10.1016/j.rinp.2019.102406
  • [13] A. Navidfar, L. Trabzon, Graphene type dependence of carbon nanotubes/graphene nanoplatelets polyurethane hybrid nanocomposites: micromechanical modeling and mechanical properties, Composites Part B: Engineering 176, 107337 (2019). DOI: https://doi.org/10.1016/j.compositesb.2019.107337
  • [14] E. Sadeghpour, Y. Guo, D. Chua, V.P.W. Shim, A modified Mori-Tanaka approach incorporating filler-matrix interface failure to model graphene/polymer nanocomposites, International Journal of Mechanical Sciences 180, 105699 (2019). DOI: https://doi.org/10.1016/j.ijmecsci.2020.105699
  • [15] S. Korchagin, E. Romanova, D. Serdechnyy, P. Nikitin, V. Dolgov, V. Feklin, Modeling of Layered Nanocomposite of Fractal Structure, Mathematics 9, 13, 1541 (2021).
  • [16] Y. Zhu et al., Investigation of the Constitutive Model of W/PMMA Composite Microcellular Foams, Polymers 11, 7, 1136 (2019).
  • [17] S. Lhadi, M.-R. Chini, T. Richeton, N. Gey, L. Germain, S. Berbenni, “Micromechanical Modeling of the Elasto-Viscoplastic Behavior and Incompatibility Stresses of β-Ti Alloys, Materials 11, 7, 1227 (2018).
  • [18] J. Scobbo, Thermomechanical Performance of Polymer Blends (Polymer Blends: Formulation and Performance). New York: John Wiley, 1987.
  • [19] C.L. Tucker Iii, E. Liang, Stiffness predictions for unidirectional short-fiber composites: Review and evaluation, Composites Science and Technology 59, 5, 655-671 (1999). DOI: https://dx.doi.org/10.1016/S0266-3538(98)00120-1
  • [20] J.C.H. Affdl, J.L. Kardos, The Halpin-Tsai equations: A review, Polymer Engineering & Science 16, 5, 344-352 (1976). DOI: https://doi.org/10.1002/pen.760160512
  • [21] K.C. Yung, J. Wang, T.M. Yue, Modeling young’s modulus of polymer-layered silicate nanocomposites using a modified halpin - Tsai micromechanical model, Journal of Reinforced Plastics and Composites 25, 8, 847-861 (2006).
  • [22] T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica 21, 5, 571-574 (1973). DOI: http://dx.doi.org/10.1016/0001-6160(73)90064-3
  • [23] J. Wang, R. Pyrz, Prediction of the overall moduli of layered silicate-reinforced nanocomposites - part I: basic theory and formulas, Composites Science and Technology 64, 7-8, 925-934 (2004). DOI: http://dx.doi.org/10.1016/S0266-3538(03)00024-1
  • [24] G.P. Tandon, G.J. Weng, The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites, Polymer Composites 5, 4, 327-333 (1984). DOI: https://doi.org/10.1002/pc.750050413
  • [25] http://prospector.ides.com/dataview.aspx, Rilsan BESVO A FDA
  • [26] http://www.scprod.com/product_bulletins/Pb%20Cloisite%2030b.pdf, Cloisite 30B Typical physical properties bulletin
Uwagi
This work was funded by universiti Malaysia Perlis, Athlone Institute of Technology and Ministry of Higher Education Malaysia.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3bc01884-16ea-4fe8-a80f-88396104b347
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.