Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | T. 65, nr 3 | 352--360
Tytuł artykułu

Modyfikacja tetragonalnej odmiany cyrkonii stabilizowanej tlenkiem itru z przeznaczeniem na elektrolity do ogniw paliwowych typu IT-SOFC

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
EN
Modification of yttriastabilized tetragonal zirconia for IT-SOFC electrolyte applications
Języki publikacji
PL
Abstrakty
PL
W niniejszej pracy, na tle literatury i badań własnych, przedstawiono zagadnienia związane z modyfikacją mikrostruktury tetragonalnej odmiany cyrkonii stabilizowanej tlenkiem itru poprzez wytworzenie kompozytowego elektrolitu dyspersyjnego 3Y-TZP/Al2O3. Wyniki tych badań wskazują na potencjalne możliwości zastosowania tego kompozytu jako elektrolitu stałego o stabilnych parametrach użytkowych do średniotemperaturowych ogniw paliwowych typu IT-SOFC, przewidzianych do pracy w zakresie temperatur 600-800 °C.
EN
The paper presents issues related to the modification of the microstructure of tetragonal zirconia stabilized with yttrium oxide via the formation of a dispersed composite 3Y-TZP/Al2O3 electrolyte. These studies point to the potential application of this composite as a solid electrolyte with stable functional parameters for the Intermediate-Temperature Solid Oxide Fuel Cells (IT-SOFC) designed for operation in the temperature range of 600-800 °C.
Wydawca

Rocznik
Strony
352--360
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
  • AGH Akademia Górniczo-Hutnicza, Wydział Inżynierii Materiałowej i Ceramiki, al. A. Mickiewicza 30, 30-059 Kraków, obal@agh.edu.pl
  • AGH Akademia Górniczo-Hutnicza, Wydział Inżynierii Materiałowej i Ceramiki, al. A. Mickiewicza 30, 30-059 Kraków
autor
  • AGH Akademia Górniczo-Hutnicza, Wydział Inżynierii Materiałowej i Ceramiki, al. A. Mickiewicza 30, 30-059 Kraków
autor
  • AGH Akademia Górniczo-Hutnicza, Wydział Inżynierii Materiałowej i Ceramiki, al. A. Mickiewicza 30, 30-059 Kraków
Bibliografia
  • [1] Minh, N.Q., Takahashi, T.: Science and Technology of Ceramic Fuel Cells, Elsevier, Amsterdam, (1995).
  • [2] Signhal, S.C., Kendall, K.: High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Elsevier, Kidlington Oxford, (2003).
  • [3] Piela, P., Czerwiński, A.: Przegląd technologii ogniw paliwowych. Typy ogniw paliwowych, Biuletyn Polskiego Stowarzyszenia Wodoru i Ogniw Paliwowych, 3, (2008), 21-30.
  • [4] Minh, N.Q.: Ceramic fuel cells, J. Am. Ceram. Soc., 76, (1993), 563-588.
  • [5] Kroeger, F. A.: Electronic conductivity of calcia-stabilized zirconia, J. Am. Ceram. Soc., 49, (1966), 215–218.
  • [6] Poulton, D. J., Smeltzer, W. W.: Oxygen diffusion in monoclinic zirconia, J. Electrochem. Soc., 117, (1977), 378-381.
  • [7] Nowotny, J., Rękas, M., Bąk, T.: Defect chemistry and defect-dependent properties of undoped and stabilized zirconia. Bulk vs interface, Key Eng. Mater., 153-154, (1998), 211-240.
  • [8] Patterson, J. W.: Conduction domains for solid electrolytes, J. Electrochem. Soc., 118, (1971), 1033-1039.
  • [9] Kobayashi, K., Kawajima, H., Masaki, H.: Phase change and mechanical properties of ZrO2-Y2O3 solid Electrolyte after ageing, Solid State Ionics, 3/4, (1981), 489-493.
  • [10] Gupta, T. K., Bechtold, J. H., Kuznicki, R. C., Cadoff, L. H., Rossing, B. R.: Stabilization of tetragonal phase in polycrystalline zirconia”, J. Mater. Sci., 12, (1977), 2421-2426.
  • [11] Gupta, T. K., Grekila, R. B., Subbaro, E. C.: Electrical conductivity of Tetragonal zirconia below the transformation temperature, J. Electrochem. Soc., 128, (1981), 929-931.
  • [12] Garvie, R. C., Hannik, R. H. J., Pascoe, R. T.: Micromechanical study of the morphology of martensite in constrained zirconia, Nature, 258, (1975), 703.
  • [13] Badwal, S.P.S.: Yttria tetragonal zirconia polycrystalline electrolytes for solid state electrochemical cells, Appl. Phys. A, 50, (1990), 449-462.
  • [14] Lee, D. S., Kim, W. S., Choi, S. H., Kim, J., Lee, H. W., Lee, J. H.: Characterization of ZrO2 co-doped with Sc2O3 and CeO2 electrolyte for the application of intermediate temperature SOFCs, Solid State Ionics, 176, (2005), 33-39.
  • [15] Gödickemeier, M., Sasaki, K., Gauckler, L. J., Riess, I.: Electrochemical characteristics of cathodes in solid oxide fuel cells based on ceria electrolytes, J. Electrochem. Soc., 144, (1997), 1635-1646.
  • [16] Mogensen, M., Sammes, N. M., Tompsett, G. A.: Physical, chemical and electrochemical properties of pure and doped Ceria, Solid State Ionics, 129, (2000), 63-94.
  • [17] Steele, B. C. H.: Materials for IT-SOFC Stacks 35 years R&D: the Inevitability of Gradualness, Solid State Ionics, 134, (2000), 3-20.
  • [18] Badwal, S. P. S., Dernnan, J.: Grain boundary resistivity in Y-TZP materials as a function of thermal history, J. Mater. Sci., 24, (1989), 88-96.
  • [19] Guo, X., Zhang, Z.: Grain size dependent grain boundary defekt structure: case of doped zirconia, Acta Mater., 51, (2003), 2539-2547.
  • [20] Rühle, M., Claussen, N., Heuer, A. H.: Microstructural studies of Y2O3 containing tetragonal ZrO2 polycrystals (Y-TZP), Sci. Technol. Zirconia II, Adv. Ceram. 12, (1984), 352-370.
  • [21] Gehardt, R., Nowick, A. S.: Grain-boundary effect in Ceria Doped with trivalent cations: I, Electrical measurements, J. Am. Ceram. Soc., 69, (1986), 641-646.
  • [22] Guo, X., Waser, R.: Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and Ceria, Prog. Mater. Sci., 51, (2006), 151-210.
  • [23] Guo, X., Ding, Y.: Grain boundary space charge effect in zirconia. Experimental evidence, J. Electrochem. Soc., 151, (2004), J1-J7.
  • [24] Tanaka, J., Baumard, J. F., Abelard, P.: Nonlinear electrical properties of grain boundaries in an oxygen-ion conductor (CeO2Y2O3), J. Am. Ceram. Soc., 70, (1987), 637-643.
  • [25] Martin, M. C., Mecartney, M. L.: Zirconia as a function of silica content and grain size, Solid State Ionics, 161, (2003), 67-79.
  • [26] Guo, X., Sigle, W., Fleig, J., Maier, J.: Role of space charge in the grain boundary blocking effect in doped zirconia, Solid State Ionics, 154-155, (2002), 555-561.
  • [27] Etsell, T. H., Flengas, S. N.: Electrical properties of solid oxide electrolytes, Chem. Rev., 70, (1970), 339-376.
  • [28] Butler, E. P., Slotwinski, R. K., Bonanos, N., Drennan, J., Steele, B. C. H.: w , N., Rühle, M., Heuer, A. T. (eds), Sci. Technol. Zirconia II, Adv. Ceram. 12, (1984), 572.
  • [29] Butler, E. P., Drennan, J.: Microstructural analysis of sintered high-conductivity zirconia with Al2O3 additions, J. Am. Ceram. Soc., 65, (1982), 474-478.
  • [30] Obal, K., Pędzich, Z., Brylewski, T., Rękas, M.: Modyfication of yttria-doped tetragonal zirconia polycrystal ceramics, Int. J. Electrochem. Sci., 7, (2012), 6831-6845.
  • [31] Rocha, R. A., Muccillo, E. N. S., Dessemond, L., Djurado, E.: Thermal ageing of nanostructured tetragonal zirconia ceramics: Characterization of interfaces, J. Eur. Ceram. Soc., 30, (2010), 227-231.
  • [32] Kim, D-J., Jung, H-J., Jung, J-W., Lee, H-L.: Fracture toughness, ionic conductivity and low-temperature phase stability of tetragonal zirconia codoped with yttria and niobium oxide, J. Am. Ceram. Soc., 81, (1998), 2309-2314.
  • [33] Watanabe, M., Iio, S., Fukurara, I.: w Claussen, N., Rühle, M., Heuer, A. T. (eds), Sci. Technol. Zirconia II, Adv. Ceram. 12, (1984), 391.
  • [34] Steele, B. C. H.: Oxygen Ion conductors in: High conductivity solid Ionic conductors, Takahashi, T. (ed), World Scientific Singapore, (1989).
  • [35] Bauerle, J. E.: Study of solid electrolyte polarisation by a complex admittance method, J. Phys. Chem. Solids, 30, (1969), 2657-2670.
  • [36] Hughes, A. H., Badwal, S. P. S.: An XPS investigation of impurity glass in Y-TZP, Mater. Forum, 15, (1991), 261-267.
  • [37] Cao, G. Z., Liu, X. Q., Brinkman, H. W., De Vries, K. J., Burggraaf, A. J.: Mixed conduction and oxygen permeation of ZrO2-Tb2O2-Y2O3 solid solutions, w Proc. 5th Int. Conf. on the Science and Technology of Zirconia, Sydney, Australia, 1992. Technomic Publ. Co. Inc., (1993), 576-583.
  • [38] Kuwabara, A., Nakano, M., Yoshida, H., Ikuhara, Y., Sakuma, T.: Superplastic flow stress and electronic structure in yttria-stabilized tetragonal zirconia polycrystals doped with GeO2 and TiO2, Acta Materialia, 52, (2004), 5563-5569.
  • [39] Weppner, W.: Tetragonal zirconia polycrystals: a high performance solid oxygen ion conductor, Solid State Ionics, 52, (1992), 15-21.
  • [40] Forker, M., De la Presa, P., Hoffbauer, W., Schlabach, S., Bruns, M., Szabo, D. V.: Structure, phase transformations, and defects of HfO2 and ZrO2 nanoparticles studied by 181Ta and 111Cd perturbed angular correlations, 1H magic-angle spinning NMR, XPS, and X-ray and electron diffraction, Phys. Rev., B77, (2008), 1-8.
  • [41] Liu, L., Feng, X., Zhang, Q., Xue, J.: ESR characterization of ZrO2 nanopowder, J. Phys. Chem., 99, (1995), 332-334.
  • [42] Perry, N. H., Mason, T. O.: Grain core and grain boundary electrical/dielectric properties of yttria-doped tetragonal zirconia polycrystal (TZP) nanoceramics, Solid State Ionics, 181, (2010), 276-284.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3baf4cdf-6fce-4aef-8595-7a5dd94e2191
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.