Warianty tytułu
Języki publikacji
Abstrakty
In this paper, a novel classification method of assessing garment sewing stitch based on amended bi-dimensional empirical mode decomposition (ABEMD) has been introduced. Two parameters that characterise garment sewing stitch, average area and standard deviation, have been defined based on the grey value of pixels. Experimental results showed that when the window size is 512×128 pixels with regard to average area, the threshold can be decided as 6.00, 5.50, 5.30 and 4.00 for five different grades , respectively. Meanwhile, with regard to standard deviation, the threshold can be decided as 48.00, 40.00, 30.00 and 20.00, respectively. It is demonstrated that the parameters are effective in discriminating sewing stitch images in terms of the grades when used as inputs for the ABEMD. The performance of the algorithm on different garment status is significantly reliable.
Czasopismo
Rocznik
Tom
Strony
110--117
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
autor
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China, jianghongxiatex@hotmail.com
autor
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China, liujihongtex@hotmail.com
autor
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China, zlchai@jiangnan.edu.cn
- School of Internet of Things, Jiangnan University, Wuxi, Jiangsu, China
autor
- Yancheng Institute of Technology, Yancheng, Jiangsu, China, cxwang@mail.dhu.edu.cn
autor
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
Bibliografia
- [1] Amirbayat J. (1990). An energy approach to the instability problem of overfed seams, part 1, International Journal of Clothing Science & Technology, 2(1), 21-25.
- [2] Amirbayat J., Morton, M.L. (1990). An energy approach to the instability problem of overfed seams: part 2, International Journal of Clothing Science & Technology, 2(2), 7-13.
- [3] Zavec P.D., Gersak J., Demsar J., Bratko I. (2006). Predicting seam appearance quality, Textile Research Journal, 76, 235-242.
- [4] Pasayev N., Korkmaz M., Baspinar D. (2012). Investigation of the techniques decreasing the seam slippage in chenille fabrics (Part I), Textile Research Journal, 82(9), 855-863.
- [5] Pasayev N., Korkmaz M., Baspinar D. (2011). Investigation of the techniques decreasing the seam slippage in chenille fabrics (Part II), Textile Research Journal, 81(20), 2075- 2081.
- [6] Mousazadegan F., Saharkhiz S., Latifi M. (2012). Prediction of tension seam pucker formation by finite-element model, International Journal of Clothing Science and Technology, 24(2/3), 129-140.
- [7] Stylios G., Parsons Moore R. (1993). Seam pucker prediction using neural computing, International Journal of Clothing Science & Technology, 5, 24-27.
- [8] Fan J., Leeuwner W. (1998). The performance of sewing threads with respect to seam appearance, Journal of Textile Institute, 89, 142-154.
- [9] Dobilaite V., Juciene M. (2006). The influence of mechanical properties of sewing threads on seam pucker, International Journal of Clothing Science & Technology,18, 335-345.
- [10] Inui S., Yamanaka T. (1998). Seam pucker simulation, International Journal of Clothing Science & Technology, 10, 128-142.
- [11] Inui S., Okabe H., Yamanaka T. (2000). Simulation of seam pucker on two strips of fabrics sewn together, International Journal of Clothing Science & Technology, 13, 53-64.
- [12] Hu J.L., Ma L., George B., Sai Keung Wong W., Zhang W. (2006). Modeling multi-layer seam puckering, Textile Research Journal, 76, 665-673.
- [13] Samuel W.D., Poojitha V. (2010). A simple system for the online detection of skip/loop stitches in single needle lockstitch sewing machines, AUTEX Research Journal, 10(3), 69-72.
- [14] Rengasamy R.S., (2011). Samuel Wesley D. Effect of thread structure on tession peaks during lock stitch sewing, AUTEX Research Journal, 11(1), 1-5.
- [15] AATCC 88B-2011. (2012). Smoothness of seams in fabrics after repeated home laundering. AATCC Technical Manual of the American Association of Textile Chemists and Colorists, 114-117.
- [16] Shiloha M. (1971). The Evaluation of seam-puckering, Journal of The Textile Institute, 62(3), 176-180.
- [17] Kim H.A., Kim S.J. (2011). Seam pucker and formability of the worsted fabrics, Fibers and Polymers, 12(8), 1099- 1105.
- [18] Dobilaite V., Juciene M. (2010). Evaluation of seam pucker using shape parameters, Materials Science (Medziagotyra), 16(2), 154-158.
- [19] Fan J., Liu F. (2000). Objective evaluation of garment seams using 3D laser scanning technology, Textile Research Journal, 70(11), 1025-1030.
- [20] Styliosa G., Sotomia J.O. (1993). Investigation of seam pucker in lightweight synthetic fabrics as an aesthetic property Part I: A cognitive model for the measurement of seam pucker, Journal of The Textile Institute, 84(4), 593-600.
- [21] Styliosa G., Sotomia J.O. (1993). Investigation of seam pucker in lightweight synthetic fabrics as an aesthetic property Part II: Model implementation using computer ‘Vision’, Journal of The Textile Institute, 84(4), 601-610.
- [22] Amirbayata J. (1992). Seams of different ply properties. Part I: Seam appearance. Journal of The Textile Institute, 83(2), 209-217.
- [23] Mousazadegan F., Saharkhiz S., Latifi M. (2013). Seam pucker rating by deconvolution residual method, International Journal of Clothing Science and Technology, 25(3), 150-170.
- [24] Yang X.B., Huang X.B. (2003). Evaluating fabric wrinkle degree with a photometric stereo method. Textile Research Journal, 73, 451-454.
- [25] Yu W., Yao M., Xu B. (2009). 3-D surface reconstruction and evaluation of wrinkled fabrics by stereo imaging, Textile Research Journal, 79, 36-46.
- [26] Zaouali R., Msahli S., El Abed B., Sakli F. (2007). Objective evaluation of multidirectional fabric wrinkling using image analysis. Journal of The Textile Institute, 98, 443-451.
- [27] Sun J., Yao M., Xu B., Bel P. (2011). Fabric wrinkle characterization and classification using modified wavelet coefficients and support-vector-machine classifiers, Textile Research Journal, 81, 902-913.
- [28] Liu J., Zhu B., Jiang H. (2013). Image analysis measurement of cottonseed coat fragments in 100% woven fabric, Fibers and Polymers, 14(7), 1208-1214.
- [29] Jiang H., Liu J., Pan R., Gao W., Wang H. (2013). Autogeneration color image for fabric based on FFT, Industria Textila, 64(4), 195-203.
- [30] Zhang X., Pan R., Liu J., Gao W., Xu W. (2011). Design gabor filters in the frequency domain for unsupervised fabric defect detection, Industria Textila, 62(4), 177-182.
- [31] Dariush S., Mehdi H., Mohammad S., Zary R. (2012). Study of structural parameters of weft knitted fabrics on luster and gloss via image processing, Industria Textila, 63(1), 42–47.
- [32] Huang N.E., Shen Z., Long S.R., Wu M.C., Shin H.H., Zheng Q., Yen N.C., Tung C., Liu H.H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceeding R. Soc. Lond. A. 903-1005.
- [33] Bernini M.B., Federico A., Kaufmann G.H., (2008). Noise reduction in degetal speckle pattern interferometry using bidimensional empirical mode decomposition, Applied Optics, 47(14), 2592-2598.
- [34] Xu G.l., Wang X.T., Xu X.G. Improved bi-dimensional EMD and Hilbert spectrum for the analysis of textures, Pattern Recognition, 2009, 42, 718-734.
- [35] Liu Z.X., Peng S.L. Boundary processing of bidimensional EMD using texture synthesis, IEEE Signal Processing Letters, 2005, 12, 33-36.
- [36] Liang L.F., Ping Z.L. An edge detection algorithm of image based on empirical mode decomposition, in: Second International Symposium on Intelligent Information Technology Application, Shanghai, China, 2008, 1, 128-132.
- [37] Zheng Y., Zheng Q. Region-based image fusion method using bidimensional empirical mode decomposition, Journal of Electronic Imaging, 2009, 18(1):013008.
- [38] Damerval C., Meignen S., Perrier V. A fast algorithm for bidimensional EMD, IEEE Signal Processing Letters, 2005,12(10), 701-704.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3b964a75-5f69-45c1-8c77-c4d7caac97ee