Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 68, iss. 3 | 1103--1108
Tytuł artykułu

Comparison of Microstructure, Ageing Effect and Shape Memory Properties of Additively Manufactured NiTi Alloy using LENS and EBAM Methods

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Samples prepared using various additive manufacturing methods were compared in terms of structure, texture, transformation temperature and superelastic properties. Samples manufactured using laser engineered net shaping (LENS) method showed texture several degrees deviated from the <001> build direction, however with composition near to the initial powder composition, enabling superelastic effect. The electron beam additive manufacturing (EBAM) samples showed martensitic structure at room temperature due to a shift of transformation temperatures to the higher range. This shift occurs due to a lower Ni content resulting from different processing conditions. However, EBAM method produced sharper <001> texture in the build direction and made it possible to obtain a good superelastic effect above room temperature. Intermetallic particles of size 0.5-2 mm were identified as Ti2Ni phase using EDS and electron diffraction analyses. This phase was often formed at the grain boundaries. Contrary to the LENS method, the EBAM prepared samples showed Ni-rich primary particles resulted from different processing conditions that reduce the Ni content in the solid solution thus increase the martensitic transformation temperature. Ageing at 500°C allowed for shifting the martensitic transformation temperatures to the higher range in both, LENS and EBAM, samples. It resulted from the formation of Ni rich coherent precipitates. In samples prepared by both methods and aged at 500°C, the presence of martensite B19’ twins was observed mainly on {011} B19’ planes.
Wydawca

Rocznik
Strony
1103--1108
Opis fizyczny
Bibliogr. 24 poz., fot., rys.
Twórcy
  • Institute of Metallurgy and Materials Science, PAS, 25, Reymonta Str., 30-059 Kraków, Poland, j.dutkiewicz@imim.pl
  • Institute of Metallurgy and Materials Science, PAS, 25, Reymonta Str., 30-059 Kraków, Poland
  • Łukasiewicz - Institute of Welding, Błogosławionego Czesława 16-18, 44-100 Gliwice, Poland
  • Military University of Technology, 2, Institute of Materials Science and Engineering, Gen. S. Kaliskiego Str., 00-908, Warsaw, Poland
  • Military University of Technology, 2, Institute of Materials Science and Engineering, Gen. S. Kaliskiego Str., 00-908, Warsaw, Poland
  • University of Balearic Islands, Department of Physics, E07122, Palma de Mallorca, Spain
Bibliografia
  • [1] M. Elahinia, N.S. Moghaddam, M.T. Andani, A. Amerinatanzi, B.A. Bimber, R.F. Hamilton, A Review, Prog. Mater. Sci. 83, 630-663 (2016).
  • [2] D. Ding, Z. Pan, D. Cuiuri, H. Li, Int. J. Adv. Manuf. Tech. 81 (1-4), 465-481 (2015).
  • [3] T. Bormann, B. Műller, M. Schinhammer, A. Kessler, P. Thalmann, M. de Wild, Mater. Charact. 94, 189-202 (2014).
  • [4] C. Wang, X.P. Tan, Z. Du, S. Chandra, Z. Sun, C.W.J. Lim, S.B. Tor, C.S. Lim, C.H. Wong, J. Mater. Process. Technol. 271, 152-161 (2019).
  • [5] I.V. Shishkovsky, I.A. Yadroitsev, I.Y. Smurov, Technical Physics Letters 39, 1081-1084 (2013).
  • [6] R.F. Hamilton, B.A. Bimber, T.A. Palmer, J. Alloys Compounds 739, 712-722 (2018).
  • [7] I. Gibson, D. Rosen, B. Stucker, New York, 2015.
  • [8] J.P. Oliveira, A.J. Cavaleiro, N. Schell, A. Stark, R.M. Miranda, J.L. Ocana, F.M. Braz Fernandes, Scripta Materialia 152, 122-126 (2018).
  • [9] S. Saedi, A.S. Turabi, M.T. Andani, C. Haberland, H. Karaca, M. Elahinia, J. Alloyd Compounds 677, 204-210 (2016).
  • [10] C. Ma, D. Gu, D. Dai, M. Xia, H. Chen, Materials Characterization 143, 191-196 (2018).
  • [11] J.J. Marattukalam, V.K. Balla, M. Das, S. Bontha, S.K. Kalpathy, J. Alloy Compounds 744, 337-346 (2019).
  • [12] S. Kumar, L. Marandi, V.K. Balla, S. Bysakh, D. Piorunek, G. Eggeler, M. Das, I. Sen, Materialia 8, 100456 (2019).
  • [13] Z. Zeng, J.P. Oliveira, S. Ao, W. Zhang, J. Cui, S. Yan, B. Peng, Optics & Laser Technol. 122, 105876 (2020).
  • [14] J. Wang, Z. Pan, Y. Wang, L. Wang, S. Su, D. Cuiuri, Y. Zhao, H. Li, Additive Manufacturing 34, 101240 (2020).
  • [15] J. Dutkiewicz, Ł. Rogal, D. Kalita, M. Węglowski, S. Błacha, K. Berent, T. Czeppe, A. Antolak-Dudka, T. Durejko, T. Czujko, J. Mater. Eng. Perf. 29, 4463-4473 (2020).
  • [16] M. Elahinia, N.S. Moghaddam, M.T. Andani, A. Amerinatanzi, B.A. Bimber, R.F. Hamilton 83, 630-663 (2016).
  • [17] S. Saedi, A.S. Turabi, M.T. Andani, N.S. Moghaddam, M. Elahinia, H.E. Karaca, Mater. Sci. Eng. A, 686, 1-10.
  • [18] J. Dutkiewicz, Ł. Rogal, D. Kalita, J. Kawałko, M. Węglowski, K. Kwieciński, P. Śliwiński, H. Danielewski, B. Antoszewski, E. Cesari, J. Mater. Eng. Perf. 31, 1609-1621 (2022).
  • [19] J. Dutkiewicz, Ł. Rogal, D. Kalita, K. Berent, J. Kawałko, A. Antolak-Dudka, T. Durejko, T. Czujko, E. Cesari, J. Mater. Science Metallurgy 2, 1-7 (2021) open access.
  • [20] H. Morawiec, Wydawnictwo Uniwersytetu Śląskiego, Katowice, 2014.
  • [21] I. Kaya, H.E. Karaca, M. Nagasako, R. Kainuma, Mater. Character. 159 110034 (2020).
  • [22] Q. Zhou, M.D. Hayat, G. Chen, S. Cai, X. Qu, H. Tang, P. Cao, Mater. Sci. Eng. A. 744, 290-298 (2019).
  • [23] J. Bhagyaraj, K.V. Ramaiah, C.N. Saikrishna, S.K. Bhaumik, Gouthama, J. Alloy Compounds 581, 344-351 (2013).
  • [24] Bin Li, Yidi Shen, Qi An, Acta Met. 199, 240-252 (2020).
Uwagi
The presented research results are the effect of the project no. UMO2016/23/B/ST8/00754 financed by the National Science Center, Poland.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3b784b93-3942-498f-bb57-19b7a6a7f76c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.