Warianty tytułu
Konferencja
19th KKMGiIG
Języki publikacji
Abstrakty
The effect of the degree of consolidation and the stress path on the behaviour of remoulded Fujinomori clay for drained triaxial compression and extension was analysed using the Frictional State Concept. It is shown that the stress–dilatancy behaviour can be approximated by a linear general dilatancy equation given by the critical frictional state angle and two soil parameters. The newly formulated dilatant failure state is represented on the stress ratio plastic dilatancy plane by points lying on the friction state line defined by the friction state angle and the Friction State Concept parameters α=0 and β=1. It has been shown that the stress ratio–plastic dilatancy relationship, which is very rarely used in the interpretation of test results, is important for a complete description of the behaviour of soils during shearing.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
247--252
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
- Department of Geotechnics, Roads and Geodesy, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology Białystok, z.szypcio@pb.edu.pl
- Department of Geotechnics, Roads and Geodesy, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology Białystok
Bibliografia
- [1] Balasubramaniam, A. S., Zue-Ming, H., Uddin, W., Chaudhry, A. R., Li, Y. G. (2007). Critical state parameters and peak stress envelopes for Bangkok clays. Q. J. Eng. Geol. Hydrogeol. 11(3), 219–232. https://doi.org/10.1144/GSL.QJEG.1978.011.03.02
- [2] Bolton, M. D. (1986). The strength and dilatancy of sands. Géotechnique 36(1), 65–78. https://doi.org/10.1680/geot.1986.36.1.65
- [3] Fearon, R. E. (1998). The behaviour of a structurally complex clay from an Italian landslide. PhD Dissertation, City University London, UK. https://openaccess.city.ac.uk/id/eprint/7575/
- [4] Fearon, R. E., Coop, M. R. (2000). Reconstitution: what makes an appropriate reference material? Géotechnique, 50(4), 471–477. https://doi.org/10.1680/geot.2000.50.4.471
- [5] Indraratna, B., Sun, Q. D., Nimbalkar, S. (2015). Observed and predicted behaviour of rail ballast under monotonic loading capturing particle breakage. Canadian Geotechnical Journal, 52(1), 73–86. https://doi.org/10.1139/cgj-2013-0361
- [6] Nakai, T., Matsuoka, H. (1986). A generalized elastoplastic constitutive model for clay in three-dimensional stresses. Soils and Foundations, 26(3), 81–98. https://doi.org/10.3208/sandf1972.26.3_81
- [7] Nakai, T., Matsuoka, H., Okuno, N., Tsuzuki, K. (1986). True triaxial tests on normally consolidated clay and analysis of the observed shear behaviour using elastoplastic constitutive models. Soils and Foundations, 26(4), 67–78. https://doi.org/10.3208/sandf1972.26.4_67
- [8] Nakai, T., Hinokio, M. A. (2004). A simple elastoplastic model for normally consolidated soils with unified material parameters. Soils and Foundations, 44(2), 53–70. https://doi.org/10.3208/sandf.44.2_53
- [9] Rahimi, M. (2019). Review of Proposed Stress-Dilatancy Relationships and Plastic Potential Functions for Uncemented and Cemented Sands. J. Geol. Res. 1, 19–34. https://doi.org/10.30564/jgr.v1i2.864
- [10] Rowe, P. W. (1962). The stress-dilatancy relation for static equilibrium of an assembly of particles in contacts. In Proceedings of the royal Society of London. Series A, Mathematical and Physical Sciences. 269(1339), 500–527. https://doi.org/10.1098/rspa.1962.0193
- [11] Rowe, P. W. (1969). The relation between shear strength of sands in triaxial compression, plane strain and direct shear. Géotechnique, 19(1), 75–86.
- [12] Shu, R., Kong, L., Liu, B., Wang, J. (2021). Stress-Strain Strength Characteristics of Undisturbed Granite Residual Soil Considering Different Patterns of Variation of Mean Effective Stress. Applied Sciences 11(4), 1874. https://doi.org/10.3390/app11041874
- [13] Szypcio, Z. (2016). Stress-dilatancy for soils. Part I: The frictional state theory. Studia Geotechnica et Mechanica, 38(4), 51–57. https://doi.org/10.1515/sgem-2016-0030
- [14] Szypcio, Z. (2016). Stress-dilatancy for soils. Part II: Experimental validation for triaxial tests. Studia Geotechnica et Mechanica, 38(4), 59–65. https://doi.org/10.1515/sgem-2016-0031
- [15] Szypcio, Z., Dołżyk-Szypcio, K. (2022). The Stress-Dilatancy Behaviour of Artificially Bonded Soils. Materials, 15(20), 7068. https://doi.org/10.3390/ma15207068
- [16] Wood, D. M. (1990). Shear behaviour and critical state soil mechanics. Cambridge University Press, New York, USA.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3b5a8094-2717-452f-9c17-0caf983e41ed