Warianty tytułu
Application of the artificial potential field method for trajectory planning of a manipulator mounted on a satellite
Języki publikacji
Abstrakty
Planowane są obecnie misje kosmiczne, których celem ma być naprawa satelitów lub usuwanie z orbity kosmicznych śmieci. Do przechwytywania obiektów na orbicie rozważa się wykorzystanie manipulatora. Trajektoria manipulatora musi być zaplanowana w taki sposób, aby nie dopuścić do kolizji z elementami przechwytywanego satelity. W pracy przedstawiony został algorytm planowania trajektorii manipulatora satelitarnego oparty na metodzie sztucznych pól potencjału (APF). Proponowana metoda została zbadana w symulacjach numerycznych przeprowadzonych dla przypadku płaskiego, a otrzymane wyniki porównano z wynikami otrzymanymi z zastosowaniem algorytmu Rapidly-exploring Random Trees (RRT). Obie metody pozwoliły na znalezienie bezkolizyjnych trajektorii manipulatora. Metoda APF może stanowić mniej wymagającą obliczeniowo alternatywę dla metody RRT.
New missions are currently planned to perform satellite servicing and removal of space debris. It is considered to use a manipulator for capturing objects on-orbit. Trajectory of the manipulator must avoid collisions with elements of the satellite. We present trajectory planning algorithm based on the artificial potential field method (APF). The proposed method has been verified in numerical simulations performed for a planar case. The results obtained with the APF method were compared with results obtained using the Rapidly-exploring Random Trees (RRT) algorithm. Both methods were successful in finding collision-free trajectories.
Rocznik
Tom
Strony
61--74
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
autor
- Katedra Cybernetyki i Robotyki, Wydział Elektroniki, Politechnika Wrocławska, Janiszewskiego 11/17, 50-372 Wrocław, tomasz.rybus@pwr.edu.pl
autor
- Centrum Badań Kosmicznych Polskiej Akademii Nauk (CBK PAN), Bartycka 18a, 00-716 Warszawa
Bibliografia
- [1] J. B. Balaram, H. W. Stone. Automated assembly in the JPL telerobot testbed. In: A. A. Desrochers (red.) Intelligent Robotic Systems for Space Exploration. New York, Springer, 1992, s. 297-342.
- [2] A. Badawy, C. R. McInnes. On-orbit assembly using superquadric potential fields. J. Guid. Control Dyn. 2008, Vol. 31(1), s. 30-43.
- [3] A. H. Barr. Superquadrics and angle-preserving transformations. IEEE Computer graphics and Applications. 1981, Vol. 1(1), s. 11-23.
- [4] J. R. Benevides, V. Grassi. Autonomous path planning of free-floating manipulators using RRT-based algorithms. In: LARS-SBR. Proceedings. Uberlandia, Minas Gerais, Brazil, October 2015.
- [5] T.V. Bhargava, K. K. Issac. Minimum time collision-free trajectories for grabbing a non-tumbling satellite. IFAC Proceedings. 2016, Vol. 49(1), s. 142-147.
- [6] R. Biesbroek, et al. The e.Deorbit CDF Study: A Design Study for the Safe Removal of a Large Space Debris. In: 6th European Conference on Space Debris. Proceedings. Darmstadt, Germany, 2013.
- [7] M. S. Branicky, W. S. Newman. Rapid Computation of Configuration Space Obstacles. In: IEEE ICRA. Proceedings. Cincinnati, Ohio, USA, May 1990.
- [8] P. Chotiprayanakul, et al. Collision-free trajectory planning for manipulators using virtual force based approach. In: ICEAST. Proceedings. Bangkok, Thailand, 2007.
- [9] B. Cohen-Tannoudji, C. Diu, F. Laloe. Quantum Mechanics, Vol. 2. New York, John Wiley and Sons, 1977.
- [10] S. Dubowsky, E. Papadopoulos. The kinematics, dynamics, and control of free-flying and free-floating space robotic systems. IEEE Trans. Robot. Autom. 1993, Vol. 9(5), s. 531-543.
- [11] X. Gao, et al. Research on path planning for 7-DOF space manipulator to avoid obstacle based on A* algorithm. Sensor Lett. 2011, Vol. 9(4), s. 1515-1519.
- [12] J.-G. Juang. Collision avoidance using potential fields. Industrial Robot: An International Journal. 1998, Vol. 25(6), s. 408-415.
- [13] O. Khatib. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. Int. J. Rob. Res. 1986, Vol. 5(1), s. 396-404.
- [14] R. Lampariello. Motion planning for the on-orbit grasping of a non-cooperative target satellite with collision avoidance. In: i-SAIRAS. Proceedings. Sapporo, Japan, August/September 2010.
- [15] R. Lampariello, G. Hirzinger. Generating feasible trajectories for autonomous on-orbit grasping of spinning debris in a useful time. In: IEEE/RSJ IROS. Proceedings. Tokyo, Japan, November 2013.
- [16] C. C. Lin, J. H. Chuang. Potential-based path planning for robot manipulators in 3-D workspace. In: IEEE ICRA. Proceedings. Taipei, Taiwan, September 2003.
- [17] J.-C. Liou, N. L. Johnson, N. M. Hill. Controlling the growth of future LEO debris populations with active debris removal. Acta Astronaut. 2010, Vol. 66(5-6).
- [18] R. K. Mathur, R. Münger, A. C. Sanderson. Hierarchical planning for space-truss assembly. In: A. A. Desrochers (red.) Intelligent Robotic Systems for Space Exploration. New York, Springer, 1992, s. 141-184.
- [19] J. Minguez, F. Lamiraux, J. P. Laumond. Motion planning and obstacle avoidance. In: B. Siciliano, O. Khatib (red.) Springer handbook of robotics. Berlin Heidelberg, Springer, 2008, s. 827-852.
- [20] A. Mohri, X. D. Yang, M. Yamamoto. Collision free trajectory planning for manipulator using potential function. In: IEEE ICRA. Proceedings. Nagoya, Japan, May 1995.
- [21] R. Mukherjee, Y. Nakamura. Nonholonomic redundancy of space robots and its utilization via hierarchical liapunov functions. In: ACC. Proceedings. Boston, MA, USA, June 1991.
- [22] S. Quinlan, O. Khatib. Elastic Bands: Connecting Path Planning and Control. In: IEEE ICRA. Proceedings. Georgia, USA, May 1993.
- [23] T. Rybus, et al. Numerical simulations and analytical analysis of the orbital capture maneouvre as a part of the manipulator-equipped servicing satellite design. In: MMAR. Proceedings. Międzyzdroje, Poland, August 2012.
- [24] T. Rybus, K. Seweryn. Application of Rapidly-exploring Random Trees (RRT) algorithm for trajectory planning of free-floating space manipulator. In: IEEE RoMoCo. Proceedings. Poznan, Poland, July 2015.
- [25] T. Rybus, K. Seweryn, J. Z. Sąsiadek. Control system for free-floating space manipulator based on Nonlinear Model Predictive Control (NMPC). J. Intell. Robot. Syst. 2017, Vol. 85(3), s. 491-509.
- [26] T. Rybus. Obstacle avoidance in space robotics: review of major challenges and proposed solutions. Prog. Aerosp. Sci. 2018, https://doi.org/10.1016/j.paerosci.2018.07.001
- [27] M. Shan, J. Guo, E. Gill. Review and comparison of active space debris capturing and removal methods. Prog. Aerosp. Sci. 2016, Vol. 80, s. 18-32.
- [28] C. Toglia, et al. Optimal target grasping of a flexible space manipulator for a class of objectives. Acta Astronaut. 2011, Vol. 68(7), s. 1031-1041.
- [29] Y. Umetani, K. Yoshida. Resolved motion rate control of space manipulators with generalized jacobian matrix, IEEE Trans.Robot.Autom. 1989, Vol. 5(3), s. 303-314.
- [30] R. Volpe, P. Khosla. Manipulator control with superquadric artificial potential functions: Theory and experiments. IEEE Trans. Syst., Man, Cybern. 1990, Vol. 20(6), s. 1423-1436.
- [31] Y. Yanoshita, S. Tsuda. Space robot path planning for collision avoidance. In: IMECS. Proceedings. Vol. 2, Hong Kong, March 2009.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3b59167c-1b7a-4b39-aaee-fb7bc417ef9f