Warianty tytułu
Języki publikacji
Abstrakty
This paper analyses the influence of face milling process parameters on the surface properties of carbon fibre reinforced polymer. The influence of milling speed and feed per tooth on the surface properties was determined. The influence of cutting speed and feed per tooth on surface energy properties was determined. The object of research was a carbon fiber reinforced plastics (CFRP) composites plate made of carbon fibre in epoxy matrix. The tool used in the study was a double-edged end mill. The machining parameters used were variable: cutting speeds of 100 m·min-1, 120 m·min-1, 140 m·min-1 and 160 m·min-1, and feeds per tooth of 0.015 mm/tooth, 0.020 mm/tooth, 0.025 mm/tooth and 0.03 mm/tooth. The axial depth of cut and radial depth of cut was a constant parameter. After milling, tests were carried out on the surface contact angle, which was used to determine the surface free energy. Based on the contact angle measurements carried out with the sitting-drop method and the calculation of the surface free energy with the Owens-Wendt model, it was observed, that the increase in the value of the surface free energy is significantly influenced by the increase in the cutting speed.
Rocznik
Tom
Strony
26--38
Opis fizyczny
Bibliogr. 33 poz., fig., tab.
Twórcy
- Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland, i.miturska@pollub.pl
autor
- Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland, j.jozwik@pollub.pl
autor
- Department of Manufacturing Engineering, Faculty of Machine Building, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania, paul.bere@tcm.utcluj.ro
Bibliografia
- 1. Mazarbhuiya R.M., Dutta H., Debnath K., Rahang M. Surface modification of CFRP composite using reverse-EDM method. Surfaces and Interfaces. 2020; 18: 100457.
- 2. Bere P., Neamtu C., Udroiu R. Novel Method for the Manufacture of Complex CFRP Parts Using FDM-based Molds. Polymers. 2020; 12(10): 2220.
- 3. Chung D.D.L. Composite materials: science and applications. 2nd ed. London New York: Springer; 2010.
- 4. Gay D., Hoa S.V. Composite Materials. 0 wyd. CRC Press; 2007
- 5. Kinet D., Mégret P., Goossen K., Qiu L., Heider D., Caucheteur C. Fiber Bragg Grating Sensors toward Structural Health Monitoring in Composite Materials: Challenges and Solutions. Sensors. 2014; 14(4): 7394–419.
- 6. Doluk E., Rudawska A., Kuczmaszewski J., Miturska-Barańska I. Surface Roughness after Milling of the Al/CFRP Stacks with a Diamond Tool. Materials. 2021; 14(22): 6835.
- 7. Tong L., Mouritz A.P., Bannister M.K. 3D fibre reinforced polymer composites. 1. ed. Amsterdam: Elsevier; 2002.
- 8. Strong A.B. Fundamentals of composites manufacturing: materials, methods, and applications. 2. Ed. Dearborn, Mich: Society of Manufacturing Engineers; 2008.
- 9. Park K.Y., Choi J.H., Lee D.G. Delamination-Free and High Efficiency Drilling of Carbon Fiber Reinforced Plastics. Journal of Composite Materials. 1995; 29(15): 1988–2002.
- 10. Davim J.P., Reis P. Drilling carbon fiber reinforced plastics manufactured by autoclave - experimental and statistical study. Materials & Design. 2003; 24(5): 315–324.
- 11. Guu Y.H., Hocheng H., Tai N.H., Liu S.Y. Effect of electrical discharge machining on the characteristics of carbon fiber reinforced carbon composites. Journal of Materials Science. 2001; 36(8): 2037–2043.
- 12. Kumar R., Agrawal P.K., Singh I. Fabrication of micro holes in CFRP laminates using EDM. Journal of Manufacturing Processes. 2018; 31: 859–866.
- 13. Dutta H., Debnath K., Sarma D.K. A study of material removal and surface characteristics in microelectrical discharge machining of carbon fiber‐reinforced plastics. Polym Compos. 2019; 40(10): 4033–4041.
- 14. Sabău E., Udroiu R., Bere P., Buranský I., Miron-Borzan C.-Ş. A Novel Polymer Concrete Composite with GFRP Waste: Applications, Morphology, and Porosity Characterization. Applied Sciences. 2020; 10(6): 2060.
- 15. Ciecieląg K., Zaleski K., Kęcik K. The influence of milling parameters on the surface roughness of glass and carbon fiber reinforced plastics. Mechanik. 2019; 92(10): 649–651.
- 16. Teti R. Machining of Composite Materials. CIRP Annals. 2002; 51(2): 611–634.
- 17. Ciecieląg K., Zaleski K. Comparative study in the passive force and cutting torque in the milling process of polymer matrix composites and aluminum alloys. Advances in Science and Technology Research Journal. 2013; 7(18): 6–12.
- 18. Kiliçkap E., Yardimeden A., Çelik Y.H. Investigation of experimental study of end milling of CFRP composite. Science and Engineering of Composite Materials. 2015; 22(1): 89–95.
- 19. Teicher U., Rosenbaum T., Nestler A., Brosius A. Characterization of the Surface Roughness of Milled Carbon Fiber Reinforced Plastic Structures. Procedia CIRP. 2017; 66: 199–203.
- 20. Rudawska A., Reszka M., Warda T., Miturska I., Szabelski J., Stančeková D., et al. Milling as a method of surface pre-treatment of steel for adhesive bonding. Journal of Adhesion Science and Technology. 2016; 30(23): 2619–2636.
- 21. Voss R., Seeholzer L., Kuster F., Wegener K. Influence of fibre orientation, tool geometry and process parameters on surface quality in milling of CFRP. CIRP Journal of Manufacturing Science and Technology. 2017; 18: 75–91.
- 22. Ghidossi P., El Mansori M., Pierron F. Edge machining effects on the failure of polymer matrix composite coupons. Composites Part A: Applied Science and Manufacturing. 2004; 35(7–8): 989–999.
- 23. Davim J.P., Reis P. Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments. Journal of Materials Processing Technology. 2005; 160(2): 160–167.
- 24. Karpat Y., Bahtiyar O., Değer B. Mechanistic force modeling for milling of unidirectional carbon fiber reinforced polymer laminates. International Journal of Machine Tools and Manufacture. 2012; 56: 79–93.
- 25. Hosokawa A., Hirose N., Ueda T., Furumoto T. High-quality machining of CFRP with high helix end mill. CIRP Annals. 2014; 63(1): 89–92.
- 26. Pecat O., Rentsch R., Brinksmeier E. Influence of Milling Process Parameters on the Surface Integrity of CFRP. Procedia CIRP. 2012; 1: 466–470.
- 27. Rudawska A., Danczak I., Müller M., Valasek P. The effect of sandblasting on surface properties for adhesion. International Journal of Adhesion and Adhesives. 2016; 70: 176–190.
- 28. Kłonica M., Kuczmaszewski J. Modification of Ti6Al4V Titanium Alloy Surface Layer in the Ozone Atmosphere. Materials. 2019; 12(13): 2113.
- 29. Kłonica M. Analysis of the effect of selected factors on the strength of adhesive joints. IOP Conf Ser: Mater Sci Eng. 2018; 393: 012041.
- 30. Park S.J., Cho M.S, Lee J.R. Studies on the Surface Free Energy of Carbon–Carbon Composites: Effect of Filler Addition on the ILSS of Composites. Journal of Colloid and Interface Science. 2000; 226(1): 60–4.
- 31. Miturska-Barańska I., Rudawska A., Doluk E. The Influence of Sandblasting Process Parameters of Aerospace Aluminium Alloy Sheets on Adhesive Joints Strength. Materials. 2021; 14(21): 6626.
- 32. Baldan A. Adhesion phenomena in bonded joints. International Journal of Adhesion and Adhesives. 2012; 38: 95–116.
- 33. Rudawska A. Surface free energy and geometric structures of the surfaces of selected epoxy composites. Polimers. 2008; 53(6): 452–426.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3b43b635-29a1-4a6e-baa9-28d63a8e88a3