Warianty tytułu
Języki publikacji
Abstrakty
Introduction: The purpose of this study was to assess the performance of a set of parameters in characterizing simulated infarcts in left ventricular (LV) models with variations in size and transmural extent. Material and methods: The deformation of the LV models with different infarct sizes was simulated using the Finite Element Method. These simulations provided meshes that were used to generate synthetic ultrasonic data within the FIELD II package. The strain components (longitudinal and circumferential) were then estimated over small subsegments of the of segments 7 and 12 (according to 17-segment left ventricle segmentation standard proposed by the American Heart Association - AHA17), using a hierarchical block matching method. The strain maps obtained were utilized to calculate the Strain Drop Factor (SDF) maps, which represent the percentage ratio of strain observed in the subsegments of the studied model to that observed in the healthy model. Infarct segmentation was performed using these maps, and various parameters were derived, including Infarct Cross-Section Area (ICSA), relative ICSA, Transmurality Ratio (TR), Mean Infarct Transmurality (MIT), strain drop factor in the infarcted region (SDFi), and Strain Contrast (SC). Results: The estimates of ICSA, SC, MIT, and SDFI showed good repeatability and demonstrated the ability to provide a quantitative assessment of the size and transmural extent of the infarcts. Conclusions: The study findings suggest that the evaluated parameters, including ICSA, SC, MIT, and SDFI, can be reliably used to assess the size and transmural extent of infarcts. These parameters offer a quantitative approach for characterizing infarcts based on strain analysis and have the potential to contribute to the diagnosis and evaluation of myocardial infarctions.
Rocznik
Tom
Strony
195--207
Opis fizyczny
Bibliogr. 62 poz., rys., tab.
Twórcy
autor
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Poland, jakub.zmigrodzki@pw.edu.pl
autor
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Poland
autor
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Poland
Bibliografia
- 1. Rebholz B, Almekkawy M. Analysis of Speckle Tracking Methods: Correlation and RF Interpolation. 2020 IEEE 4th International Conference on Image Processing, Applications and Systems (IPAS). Published online December 9, 2020. https://doi.org/10.1109/IPAS50080.2020.9334963
- 2. Fujikura K, Makkiya M, Farooq M, et al. Speckle-Tracking Echocardiography with Novel Imaging Technique of Higher Frame Rate. JCM. 2021;10(10):2095 https://doi.org/10.3390/jcm10102095
- 3. Özer S, Candan L, Özyıldız AG, Turan OE. Evaluation of left ventricular global functions with speckle tracking echocardiography in patients recovered from COVID-19. Int J Cardiovasc Imaging. 2021;37(7):2227-2233. https://doi.org/10.1007/s10554-021-02211-5
- 4. Papangelopoulou K, Orlowska M, Bezy S, et al. High frame rate speckle tracking echocardiography to assess diastolic function. European Heart Journal. 2021;42(Supplement_1). https://doi.org/10.1093/eurheartj/ehab724.031
- 5. Pastore MC, De Carli G, Mandoli GE, et al. The prognostic role of speckle tracking echocardiography in clinical practice: evidence and reference values from the literature. Heart Fail Rev. 2020;26(6):1371-1381. https://doi.org/10.1007/s10741-020-09945-9
- 6. Popescu MR, Bouariu A, Ciobanu AM, Gică N, Panaitescu AM. Pregnancy Complications Lead to Subclinical Maternal Heart Dysfunction - The Importance and Benefits of Follow-Up Using Speckle Tracking Echocardiography. Medicina. 2022;58(2):296. https://doi.org/10.3390/medicina58020296
- 7. Romanowicz J, Ferraro AM, Harrington JK, et al. Pediatric Normal Values and Z Score Equations for Left and Right Ventricular Strain by Two-Dimensional Speckle-Tracking Echocardiography Derived from a Large Cohort of Healthy Children. Journal of the American Society of Echocardiography. 2023;36(3):310-323. https://doi.org/10.1016/j.echo.2022.11.006
- 8. Zhang X, Ruan B, Qiao Z, et al. The Balance between the Left and Right Ventricular Deformation Evaluated by Speckle Tracking Echocardiography Is a Great Predictor of the Major Adverse Cardiac Event in Patients with Pulmonary Hypertension. Diagnostics. 2022;12(9):2266. https://doi.org/10.3390/diagnostics12092266
- 9. Pagourelias ED, Mirea O, Duchenne J, et al. Speckle tracking deformation imaging to detect regional fibrosis in hypertrophic cardiomyopathy: a comparison between 2D and 3D echo modalities. European Heart Journal - Cardiovascular Imaging. 2020;21(11):1262-1272. https://doi.org/10.1093/ehjci/jeaa057
- 10. Aly D, Madan N, Kuzava L, Samrany A, Parthiban A. Comprehensive evaluation of left ventricular deformation using speckle tracking echocardiography in normal children: comparison of three-dimensional and two-dimensional approaches. Cardiovasc Ultrasound. 2022;20(1). https://doi.org/10.1186/s12947-022-00273-6
- 11. Burns RJ, Gibbons RJ, Yi Q, et al. The relationships of left ventricular ejection fraction, end-systolic volume index and infarct size to six-month mortality after hospital discharge following myocardial infarction treated by thrombolysis. Journal of the American College of Cardiology. 2002;39(1):30-36. https://doi.org/10.1016/S0735-1097(01)01711-9
- 12. Stone GW, Selker HP, Thiele H, et al. Relationship Between Infarct Size and Outcomes Following Primary PCI. Journal of the American College of Cardiology. 2016;67(14):1674-1683. https://doi.org/10.1016/j.jacc.2016.01.069
- 13. Trivedi SJ, Campbell T, Stefani LD, Thomas L, Kumar S. Strain by speckle tracking echocardiography correlates with electroanatomic scar location and burden in ischaemic cardiomyopathy. European Heart Journal - Cardiovascular Imaging. 2021;22(8):855-865. https://doi.org/10.1093/ehjci/jeab021
- 14. Choi KM, Kim RJ, Gubernikoff G, Vargas JD, Parker M, Judd RM. Transmural Extent of Acute Myocardial Infarction Predicts Long-Term Improvement in Contractile Function. Circulation. 2001;104(10):1101-1107. https://doi.org/10.1161/hc3501.096798
- 15. Wu Z, Shu X, Fan B, Dong L, Pan C, Chen S. Differentiation of transmural and nontransmural infarction using speckle tracking imaging to assess endocardial and epicardial torsion after revascularization. Int J Cardiovasc Imaging. 2012;29(1):63-70. https://doi.org/10.1007/s10554-012-0050-4
- 16. Chan J, Hanekom L, Wong C, Leano R, Cho GY, Marwick TH. Differentiation of Subendocardial and Transmural Infarction Using Two-Dimensional Strain Rate Imaging to Assess Short-Axis and Long-Axis Myocardial Function. Journal of the American College of Cardiology. 2006;48(10):2026-2033. https://doi.org/10.1016/j.jacc.2006.07.050
- 17. Zhang Y, Chan AKY, Yu CM, et al. Strain Rate Imaging Differentiates Transmural From Non-Transmural Myocardial Infarction. Journal of the American College of Cardiology. 2005;46(5):864-871. https://doi.org/10.1016/j.jacc.2005.05.054
- 18. Ishizu T, Seo Y, Enomoto Y, et al. Experimental validation of left ventricular transmural strain gradient with echocardiographic two-dimensional speckle tracking imaging. European Journal of Echocardiography. 2010;11(4):377-385. https://doi.org/10.1093/ejechocard/jep221
- 19. Waldman LK, Fung YC, Covell JW. Transmural myocardial deformation in the canine left ventricle. Normal in vivo three-dimensional finite strains. Circ Res. 1985;57(1):152-163. https://doi.org/10.1161/01.RES.57.1.152
- 20. Sakurai D, Asanuma T, Masuda K, Hioki A, Nakatani S. Myocardial layer-specific analysis of ischemic memory using speckle tracking echocardiography. Int J Cardiovasc Imaging. 2014;30(4):739-748. https://doi.org/10.1007/s10554-014-0388-x
- 21. Tee N, Gu Y, Murni, Shim W. Comparative Myocardial Deformation in 3 Myocardial Layers in Mice by Speckle Tracking Echocardiography. BioMed Research International. 2015;2015:1-8. https://doi.org/10.1155/2015/148501
- 22. Abate E, Hoogslag GE, Leong DP, et al. Association between Multilayer Left Ventricular Rotational Mechanics and the Development of Left Ventricular Remodeling after Acute Myocardial Infarction. Journal of the American Society of Echocardiography. 2014;27(3):239-248. https://doi.org/10.1016/j.echo.2013.12.009
- 23. Adamu U, Schmitz F, Becker M, Kelm M, Hoffmann R. Advanced speckle tracking echocardiography allowing a three-myocardial layer-specific analysis of deformation parameters. European Journal of Echocardiography. 2008;10(2):303-308. https://doi.org/10.1093/ejechocard/jen238
- 24. Leitman M, Lysiansky M, Lysyansky P, et al. Circumferential and Longitudinal Strain in 3 Myocardial Layers in Normal Subjects and in Patients with Regional Left Ventricular Dysfunction. Journal of the American Society of Echocardiography. 2010;23(1):64-70. https://doi.org/10.1016/j.echo.2009.10.004
- 25. Bachner‐Hinenzon N, Shlomo L, Khamis H, et al. Detection of small subendocardial infarction using speckle tracking echocardiography in a rat model. Echocardiography. 2016;33(10):1571-1578. https://doi.org/10.1111/echo.13291
- 26. Bachner-Hinenzon N, Ertracht O, Malka A, et al. Layer-specific strain analysis: investigation of regional deformations in a rat model of acute versus chronic myocardial infarction. American Journal of Physiology-Heart and Circulatory Physiology. 2012;303(5):H549-H558. https://doi.org/10.1152/ajpheart.00294.2012
- 27. Cygan S, Kumor M, Żmigrodzki J, Leśniak-Plewińska B, Kowalski M, Kałużyński K. Left ventricular phantoms with inclusions simulating transmural and non-transmural infarctions: FEM and EchoPAC study. Duric N, Heyde B, eds. SPIE Proceedings. Published online March 13, 2017. https://doi.org/10.1117/12.2254350
- 28. Żmigrodzki J, Cygan S, Kałużyński K. Quantitative evaluation of segmentation accuracy of subsegmental infarcts using 2DSTE and synthetic ultrasonic data in a spheroidal model of the left ventricle. Biomedical Signal Processing and Control. 2022;78:103880. https://doi.org/10.1016/j.bspc.2022.103880
- 29. Żmigrodzki J, Cygan S, Kałużyński K. Evaluation of strain averaging area and strain estimation errors in a spheroidal left ventricular model using synthetic image data and speckle tracking. BMC Med Imaging. 2021;21(1). https://doi.org/10.1186/s12880-021-00635-y
- 30. Żmigrodzki J, Cygan S, Leśniak-Plewińska B, Kowalski M, KaŁużyński K. Effect of Transmural Extent of the Simulated Infarction in a Left Ventricular Model on Displacement and Strain Distribution Estimated from Synthetic Ultrasonic Data. Ultrasound in Medicine & Biology. 2017;43(1):206-217. https://doi.org/10.1016/j.ultrasmedbio.2016.08.017
- 31. Mele D, Trevisan F, D’Andrea A, et al. Speckle Tracking Echocardiography in Non–ST-Segment Elevation Acute Coronary Syndromes. Current Problems in Cardiology. 2021;46(3):100418. https://doi.org/10.1016/j.cpcardiol.2019.03.007
- 32. Mele D, Fiorencis A, Chiodi E, Gardini C, Benea G, Ferrari R. Polar plot maps by parametric strain echocardiography allow accurate evaluation of non-viable transmural scar tissue in ischaemic heart disease. Eur Heart J Cardiovasc Imaging. 2015;17(6):668-677. https://doi.org/10.1093/ehjci/jev191
- 33. Shi J, Pan C, Kong D, Cheng L, Shu X. Left Ventricular Longitudinal and Circumferential Layer‐Specific Myocardial Strains and Their Determinants in Healthy Subjects. Echocardiography. 2015;33(4):510-518. https://doi.org/10.1111/echo.13132
- 34. Cerqueira MD, Weissman NJ, et al. Standardized Myocardial Segmentation and Nomenclature for Tomographic Imaging of the Heart. Circulation. 2002;105(4):539-542. https://doi.org/10.1161/hc0402.102975
- 35. Alessandrini M, Heyde B, Tong L, Bernard O, D’hooge J. Tracking quality in plane-wave versus conventional cardiac ultrasound: A preliminary evaluation in-silico based on a state-of-the-art simulation pipeline. 2015 IEEE International Ultrasonics Symposium (IUS). Published online October 2015. https://doi.org/10.1109/ULTSYM.2015.0390
- 36. Altiok E, Neizel M, Tiemann S, et al. Layer-specific analysis of myocardial deformation for assessment of infarct transmurality: comparison of strain-encoded cardiovascular magnetic resonance with 2D speckle tracking echocardiography. European Heart Journal - Cardiovascular Imaging. 2012;14(6):570-578. https://doi.org/10.1093/ehjci/jes229
- 37. Curiale AH, Vegas-Sánchez-Ferrero G, Aja-Fernández S. Influence of ultrasound speckle tracking strategies for motion and strain estimation. Medical Image Analysis. 2016;32:184-200. https://doi.org/10.1016/j.media.2016.04.002
- 38. De Craene M, Marchesseau S, Heyde B, et al. 3D Strain Assessment in Ultrasound (Straus): A Synthetic Comparison of Five Tracking Methodologies. IEEE Trans Med Imaging. 2013;32(9):1632-1646. https://doi.org/10.1109/TMI.2013.2261823
- 39. D’hooge J, Barbosa D, Gao H, et al. Two-dimensional speckle tracking echocardiography: standardization efforts based on synthetic ultrasound data. Eur Heart J Cardiovasc Imaging. 2015;17(6):693-701. https://doi.org/10.1093/ehjci/jev197
- 40. Grondin J, Sayseng V, Konofagou EE. Cardiac Strain Imaging With Coherent Compounding of Diverging Waves. IEEE Trans Ultrason, Ferroelect, Freq Contr. 2017;64(8):1212-1222. https://doi.org/10.1109/TUFFC.2017.2717792
- 41. Helle-Valle T, Crosby J, Edvardsen T, et al. New Noninvasive Method for Assessment of Left Ventricular Rotation. Circulation. 2005;112(20):3149-3156. https://doi.org/10.1161/CIRCULATIONAHA.104.531558
- 42. Heyde B, Cygan S, Choi HF, et al. Three-dimensional cardiac motion and strain estimation: A validation study in thick-walled univentricular phantoms. 2010 IEEE International Ultrasonics Symposium. Published online October 2010. https://doi.org/10.1109/ULTSYM.2010.5935693
- 43. Korinek J, Kjaergaard J, Sengupta PP, et al. High Spatial Resolution Speckle Tracking Improves Accuracy of 2-Dimensional Strain Measurements: An Update on a New Method in Functional Echocardiography. Journal of the American Society of Echocardiography. 2007;20(2):165-170. https://doi.org/10.1016/j.echo.2006.08.031
- 44. Lamacie MM, Thavendiranathan P, Hanneman K, et al. Quantification of global myocardial function by cine MRI deformable registration-based analysis: Comparison with MR feature tracking and speckle-tracking echocardiography. Eur Radiol. 2016;27(4):1404-1415. https://doi.org/10.1007/s00330-016-4514-0
- 45. Wei-Ning Lee, Ingrassia CM, Fung-Kee-Fung SD, Costa KD, Holmes JW, Konofagou EE. Theoretical Quality Assessment of Myocardial Elastography with In Vivo Validation. IEEE Trans Ultrason, Ferroelect, Freq Contr. 2007;54(11):2233-2245. https://doi.org/10.1109/TUFFC.2007.528
- 46. Lopata RGP, Nillesen MM, Hansen HHG, Gerrits IH, Thijssen JM, de Korte CL. Performance Evaluation of Methods for Two-Dimensional Displacement and Strain Estimation Using Ultrasound Radio Frequency Data. Ultrasound in Medicine & Biology. 2009;35(5):796-812. https://doi.org/10.1016/j.ultrasmedbio.2008.11.002
- 47. Jianwen Luo, Wei-Ning Lee, Konofagou E. Fundamental performance assessment of 2-D myocardial elastography in a phased-array configuration. IEEE Trans Ultrason, Ferroelect, Freq Contr. 2009;56(10):2320-2327. https://doi.org/10.1109/TUFFC.2009.1313
- 48. Tobon-Gomez C, De Craene M, McLeod K, et al. Benchmarking framework for myocardial tracking and deformation algorithms: An open access database. Medical Image Analysis. 2013;17(6):632-648. https://doi.org/10.1016/j.media.2013.03.008
- 49. Zmigrodzki J, Cygan S, Wilczewska A, Kaluzynski K. Quantitative Assessment of the Effect of the Out-of-Plane Movement of the Homogenous Ellipsoidal Model of the Left Ventricle on the Deformation Measures Estimated Using 2-D Speckle Tracking - An In-Silico Study. IEEE Trans Ultrason, Ferroelect, Freq Contr. 2018;65(10):1789-1803. https://doi.org/10.1109/TUFFC.2018.2856127
- 50. Cygan S. Modelowanie numeryczne fantomów serca na potrzeby obrazowania odkształceń w echokardiografii (Numerical modeling of heart phantoms as a support for strain imaging in echocardiography). Akademicka Oficyna Wydawnicza EXIT; 2019.
- 51. Cygan S, Żmigrodzki J, Leśniak-Plewińska B, Karny M, Pakieła Z, Kałużyński K. Influence of Polivinylalcohol Cryogel Material Model in FEM Simulations on Deformation of LV Phantom. Functional Imaging and Modeling of the Heart. Published online 2015:313-320. https://doi.org/10.1007/978-3-319-20309-6_36
- 52. Azhari H, Beyar R, Sideman S. On the Human Left Ventricular Shape. Computers and Biomedical Research. 1999;32(3):264-282. https://doi.org/10.1006/cbmr.1999.1513
- 53. Nesser HJ, Mor-Avi V, Gorissen W, et al. Quantification of left ventricular volumes using three-dimensional echocardiographic speckle tracking: comparison with MRI. European Heart Journal. 2009;30(13):1565-1573. https://doi.org/10.1093/eurheartj/ehp187
- 54. Seemann F, Pahlm U, Steding-Ehrenborg K, et al. Time-resolved tracking of the atrioventricular plane displacement in Cardiovascular Magnetic Resonance (CMR) images. BMC Med Imaging. 2017;17(1). https://doi.org/10.1186/s12880-017-0189-5
- 55. Carlsson M. Aspects on Cardiac Pumping. Doctoral Thesis. Lund University, Faculty of Medicine; 2007.
- 56. Boone KG, Holder DS. Effect of skin impedance on image quality and variability in electrical impedance tomography: a model study. Med Biol Eng Comput. 1996;34(5):351-354. https://doi.org/10.1007/BF02520003
- 57. Jensen JA, Svendsen NB. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans Ultrason, Ferroelect, Freq Contr. 1992;39(2):262-267. https://doi.org/10.1109/58.139123
- 58. Bierling M. Displacement Estimation By Hierarchical Blockmatching. Hsing TR, ed. SPIE Proceedings. Published online October 25, 1988. https://doi.org/10.1117/12.969046
- 59. Żmigrodzki J. Ograniczenia oceny lokalnej funkcji skurczowej lewej komory serca z wykorzystaniem dwuwymiarowych danych echograficznych i metody śledzenia markerów akustycznych - badania "in silico". Akademicka Oficyna Wydawnicza EXIT; 2019.
- 60. Lai WM, Rubin D, Krempl E. CHAPTER 5 - The Elastic Solid. In: Lai WM, Rubin D, Krempl E, eds. Introduction to Continuum Mechanics (Fourth Edition). Butterworth-Heinemann; 2010:201-352. https://doi.org/10.1016/B978-0-7506-8560-3.00005-0
- 61. Collier P, Phelan D, Klein A. A Test in Context: Myocardial Strain Measured by Speckle-Tracking Echocardiography. Journal of the American College of Cardiology. 2017;69(8):1043-1056. https://doi.org/10.1016/j.jacc.2016.12.012
- 62. Dice LR. Measures of the Amount of Ecologic Association Between Species. Ecology. 1945;26(3):297-302. https://doi.org/10.2307/1932409
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3b2cb71d-1d0f-47fb-a635-1d46d0bc726c