Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 41, No. 1 | 191--201
Tytuł artykułu

Annealing effect on the structural and optoelectronic properties of Cu-Cr-O thin films deposited by reactive magnetron sputtering using a single CuCr target

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study is to explore the structural and optoelectronic properties of Cu-Cr-O thin films when processed by the magnetron sputtering method using a single equimolar CuCr alloy target. These films were then post-annealed in a controlled Ar atmosphere at 500°C to 800°C for 2 h. The as-deposited Cu-Cr-O thin film consisted of an amorphous phase and exhibited extremely poor optoelectronic properties. After annealing was conducted at 500°C, monoclinic CuO and spinel CuCr2O4 phases were simultaneously formed in the film. Upon increasing the annealing temperature to 600°C, the CuCr2O4 phase reacted completely with the CuO phase and transformed into the delafossite CuCrO2 phase, possessing optimal optoelectronic performance. It has an electrical resistivity of 41 Ω-cm and a light transmittance of 49.5%, making it suitable for p-type transparent conducting electrodes. A further increase in annealing temperature resulted in larger grains and greater surface roughness and void density, which, in turn, degraded the optoelectronic performance.
Wydawca

Rocznik
Strony
191--201
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402202, Taiwan, Republic of China
  • Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402202, Taiwan, Republic of China
  • Metal Industries Research and Development Centre, Kaohsiung 811225, Taiwan, Republic of China
  • Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402202, Taiwan, Republic of China
  • Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411030, Taiwan, Republic of China, chang@ncut.edu.tw
Bibliografia
  • [1] Jaffray W, Saha S, Shalaev VM, Boltasseva A, Ferrera M. Transparent conducting oxides: from all-dielectric plasmonics to a new paradigm in integrated photonics. Adv Opt Photonics. 2022;14: 148–208.
  • [2] Gong W, Wang G, Gong Y, Zhao L, Mo L, Diao H, et al. Investigation of In2O3:SnO2 films with different doping ratio and application as transparent conducting electrode in silicon heterojunction solar cell. Sol Energy Mater Sol Cells. 2022;234: 111404.
  • [3] Joo YH, Um DS, Kim CI. Tunable physical properties of Al-doped ZnO thin films by O2 and Ar plasma treatments. Mater Res Express. 2021;8: 126402.
  • [4] Jang KS, Lee JW, Kim J, Yoo SI. Electrical and optical properties of Sb-doped SnO2 thin films fabricated by pulsed laser deposition. J Korean Ceram Soc. [n.d.];51: 43–50.
  • [5] Marquardt MA, Ashmore NA, Cann DP. Crystal chemistry and electrical properties of the delafossite structure. Thin Solid Films. 2006;496: 146–156.
  • [6] Li D, Fang X, Zhao A, Deng Z, Dong W, Tao R. Physical properties of CuCrO2 films prepared by pulsed laser deposition. Vacuum. 2010;84: 851–856.
  • [7] Lin SH, Yeh RH, Chu C, Yu RS. Effects of Mg doping on structural and optoelectronic properties of p-type semiconductor CuCrO2 thin films. Materials Science Semiconductor Processing. 2022;139: 106346.
  • [8] Li W, Cheng H. Cu–Cr–O nanocomposites: synthesis and characterization as catalysts for solid state propellants. Solid State Sci. 2007;9: 750–755.
  • [9] Huang RJ, Sakthinathan S, Chiu TW, Dong C. Hydrothermal synthesis of high surface area CuCrO2 for H2 production by methanol steam reforming. RSC Adv. 2021;11: 12607–12613.
  • [10] Popa PL, Crêpellière J, Leturcq R, Lenoble D. Electrical and optical properties of Cu–Cr–O thin films fabricated by chemical vapour deposition. Thin Solid Films. 2016;612: 194–201.
  • [11] Barnabé A, Thimont Y, Lalanne M, Presmanes L, Tail-hades P. p-Type conducting transparent characteristics of delafossite Mg-doped CuCrO2 thin films prepared by RF-sputtering. J Mater Chem C. 2015;3: 6012–6024.
  • [12] Sun CH, Tsai DC, Chang ZC, Chen EC, Shieu FS. Effects of annealing time on the structural and optoelectronic properties of p-type conductive transparent Cu– Cr–O films. J Mater Sci Mater Electron. 2016;27: 9740– 9747.
  • [13] Sun CH, Tsai DC, Chang ZC, Chen EC, Shieu FS. Structural, optical, and electrical properties of conducting p-type transparent Cu–Cr–O thin films. Ceram Int. 2016;42: 13697–13703.
  • [14] Tsai DC, Chang ZC, Kuo BH, Chen CM, Chen EC, Shieu FS. Influence of chemical composition on phase transformation and optoelectronic properties of Cu–Cr– O thin films by reactive magnetron sputtering. J Mater Res Technol. 2019;8: 690–696.
  • [15] Zheng B, Wu Z, Cui S, Xiao S, Liu L, Lin H, et al. Discharge and deposition characteristics of high-power impulse magnetron sputtering using various target materials. IEEE Trans Plasma Sci. 2019;47:93–198.
  • [16] Jacob KT, Kale GM, Iyengar GNK. Oxygen potentials, Gibbs’ energies and phase relations in the Cu-Cr-O system. J Mater Sci. 1986;21: 2753–2758.
  • [17] Hu ZQ, Qin Y, Zhou HR, Kang J, Zhai SR, Gao H. Preparation and photoelectric properties of CuCr2O4 nanopowders. Adv Mater Res. 2011;284–286: 974–979.
  • [18] An Y, Li Z, Shen J. Enhanced visible light response of CuO nanoparticle-modified sodium titanate nanotube heterojunction thin films. Mater Lett. 2012;74: 65–67.
  • [19] Coriand L. Roughness, Wetting, and Optical Properties of Functional Surfaces. Stuttgart; 2014.
  • [20] Tsai DC, Chen FK, Chang ZC, Kuo BH, Chen EC, Huang YL, et al. Effect of Al2O3-doping on the structure and optoelectronic characteristics of MgZnO thin film prepared by RF magnetron sputtering. Appl Phys A. 2021;127: 571.
  • [21] Tsai DC, Chen FK, Chang ZC, Kuo BH, Chen EC, Huang YL, et al. Influence of substrate temperature on the structural and optoelectronic properties of Zn-MgO:Al coatings deposited by radio frequency magnetron sputtering. J Ceram Soc Jpn. 2021;129: 714–719.
  • [22] De KS, Ghose J, Murthy KSRC. Electrical properties of the CuCr2O4 spinel catalyst. J Solid State Chem. 1982;43: 261–266.
  • [23] Slade PG. Electrical Contacts: Principles and Applications. 2nd ed. Boca Raton, FL: CRC Press; 2017.
  • [24] Ogwu AA, Darma TH, Bouquerel E. Electrical resistivity of copper oxide thin films prepared by reactive magnetron sputtering. J Achiev Mater Manuf Eng. 2007;172–177.
  • [25] Banerjee AN, Chattopadhyay KK. Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films. Prog Cryst Growth Charact Mater. 2005;50: 52–105.
  • [26] Katayama-Yoshida H, Koyanagi T, Funashima H, Harima H, Yanase A. Engineering of nested Fermi surface and transparent conducting p-type delafossite CuAlO2: possible lattice instability or transparent superconductivity? Solid State Commun. 2003;126: 135–139.
  • [27] Katayama-Yoshida H, Sato K, Kizaki H, Funashima H, Hamada I, Fukushima T, et al. Ab initio materials design for transparent-conducting-oxide-based new-functional materials. Appl Phys A. 2007;89: 19–27.
  • [28] Banerjee AN, Ghosh CK, Chattopadhyay KK. Effect of excess oxygen on the electrical properties of transparent p-type conducting CuAlO2+x thin films. Sol Energy Mater Sol Cells. 2005;89: 75–83.
  • [29] Yu RS, Tasi CP. Structure, composition and properties of p-type CuCrO2 thin films. Ceram Int. 2014;40: 8211– 8217.
  • [30] Lu JG, Ye ZZ, Zeng YJ, Zhu LP, Wang L, Yuan J, et al. Structural, optical, and electrical properties of (Zn,Al)O films over a wide range of compositions. J Appl Phys. 2006;100: 073714.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3b107674-444b-4eae-89ed-b347be67cc8a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.